1
|
Lubojański A, Zakrzewski W, Samól K, Bieszczad-Czaja M, Świtała M, Wiglusz R, Watras A, Mielan B, Dobrzyński M. Application of Nanohydroxyapatite in Medicine-A Narrative Review. Molecules 2024; 29:5628. [PMID: 39683785 PMCID: PMC11643452 DOI: 10.3390/molecules29235628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
This review is an extensive collection of the latest literature describing the current knowledge about nanohydroxyapatite in a comprehensive way. These are hydroxyapatite particles with a size below 100 nm. Due to their size, the surface area to mass ratio of the particles increases. They are widely used in medicine due to their high potential in regenerative medicine, as a carrier of various substances, e.g., in targeted therapy. The aim of this article is to present the biological and physicochemical properties as well as the use of nanohydroxyapatite in modern medicine. Due to the potential of nanohydroxyapatite in medicine, further research is needed.
Collapse
Affiliation(s)
- Adam Lubojański
- Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wrocław, Poland;
| | - Wojciech Zakrzewski
- Pre-Clinical Research Centre, Wroclaw Medical University, Bujwida 44, 50-345 Wroclaw, Poland (K.S.); (M.B.-C.); (M.Ś.); (B.M.)
| | - Kinga Samól
- Pre-Clinical Research Centre, Wroclaw Medical University, Bujwida 44, 50-345 Wroclaw, Poland (K.S.); (M.B.-C.); (M.Ś.); (B.M.)
| | - Martyna Bieszczad-Czaja
- Pre-Clinical Research Centre, Wroclaw Medical University, Bujwida 44, 50-345 Wroclaw, Poland (K.S.); (M.B.-C.); (M.Ś.); (B.M.)
| | - Mateusz Świtała
- Pre-Clinical Research Centre, Wroclaw Medical University, Bujwida 44, 50-345 Wroclaw, Poland (K.S.); (M.B.-C.); (M.Ś.); (B.M.)
| | - Rafał Wiglusz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland;
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
- Meinig School of Biomedical Engineering, College of Engineering, Cornell University, Ithaca, NY 14853-1801, USA
| | - Adam Watras
- Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wrocław, Poland;
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland;
| | - Bartosz Mielan
- Pre-Clinical Research Centre, Wroclaw Medical University, Bujwida 44, 50-345 Wroclaw, Poland (K.S.); (M.B.-C.); (M.Ś.); (B.M.)
| | - Maciej Dobrzyński
- Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wrocław, Poland;
| |
Collapse
|
2
|
Choe Y, Li CJ, Yeo DH, Kim YJ, Lee JH, Lee HH. Hierarchically porous surface of HA-sandblasted Ti implant screw using the plasma electrolytic oxidation: Physical characterization and biological responses. J Biomater Appl 2024; 38:1100-1117. [PMID: 38580320 DOI: 10.1177/08853282241246210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
The surface topological features of bioimplants are among the key indicators for bone tissue replacement because they directly affect cell morphology, adhesion, proliferation, and differentiation. In this study, we investigated the physical, electrochemical, and biological responses of sandblasted titanium (SB-Ti) surfaces with pore geometries fabricated using a plasma electrolytic oxidation (PEO) process. The PEO treatment was conducted at an applied voltage of 280 V in a solution bath consisting of 0.15 mol L-1 calcium acetate monohydrate and 0.02 mol L-1 calcium glycerophosphate for 3 min. The surface chemistry, wettability, mechanical properties and corrosion behavior of PEO-treated sandblasted Ti implants using hydroxyapatite particles (PEO-SB-Ti) were improved with the distribution of calcium phosphorous porous oxide layers, and showed a homogeneous and hierarchically porous surface with clusters of nanopores in a bath containing calcium acetate monohydrate and calcium glycerophosphate. To demonstrate the efficacy of PEO-SB-Ti, we investigated whether the implant affects biological responses. The proposed PEO-SB-Ti were evaluated with the aim of obtaining a multifunctional bone replacement model that could efficiently induce osteogenic differentiation as well as antibacterial activities. These physical and biological responses suggest that the PEO-SB-Ti may have a great potential for use an artificial bone replacement compared to that of the controls.
Collapse
Affiliation(s)
- YoungEun Choe
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Cheng Ji Li
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Dong-Hyeon Yeo
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Yu-Jin Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, Republic of Korea
| | - Hae-Hyoung Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
3
|
Li M, Guo Q, Zhong C, Zhang Z. Multifunctional cell membranes-based nano-carriers for targeted therapies: a review of recent trends and future perspective. Drug Deliv 2023; 30:2288797. [PMID: 38069500 PMCID: PMC10987056 DOI: 10.1080/10717544.2023.2288797] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/05/2023] [Indexed: 12/18/2023] Open
Abstract
Nanotechnology has ignited a transformative revolution in disease detection, prevention, management, and treatment. Central to this paradigm shift is the innovative realm of cell membrane-based nanocarriers, a burgeoning class of biomimetic nanoparticles (NPs) that redefine the boundaries of biomedical applications. These remarkable nanocarriers, designed through a top-down approach, harness the intrinsic properties of cell-derived materials as their fundamental building blocks. Through shrouding themselves in natural cell membranes, these nanocarriers extend their circulation longevity and empower themselves to intricately navigate and modulate the multifaceted microenvironments associated with various diseases. This comprehensive review provides a panoramic view of recent breakthroughs in biomimetic nanomaterials, emphasizing their diverse applications in cancer treatment, cardiovascular therapy, viral infections, COVID-19 management, and autoimmune diseases. In this exposition, we deliver a concise yet illuminating overview of the distinctive properties underpinning biomimetic nanomaterials, elucidating their pivotal role in biomedical innovation. We subsequently delve into the exceptional advantages these nanomaterials offer, shedding light on the unique attributes that position them at the forefront of cutting-edge research. Moreover, we briefly explore the intricate synthesis processes employed in creating these biomimetic nanocarriers, shedding light on the methodologies that drive their development.
Collapse
Affiliation(s)
- Mo Li
- Department of Endocrinology, the Second Hospital of Jilin University, Changchun, China
| | - Qiushi Guo
- Pharmacy Department, First Hospital of Jilin University—the Eastern Division, Changchun, China
| | - Chongli Zhong
- Department of Endocrinology, the Second Hospital of Jilin University, Changchun, China
| | - Ziyan Zhang
- Department of Orthopedics, the Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Madamsetty VS, Mohammadinejad R, Uzieliene I, Nabavi N, Dehshahri A, García-Couce J, Tavakol S, Moghassemi S, Dadashzadeh A, Makvandi P, Pardakhty A, Aghaei Afshar A, Seyfoddin A. Dexamethasone: Insights into Pharmacological Aspects, Therapeutic Mechanisms, and Delivery Systems. ACS Biomater Sci Eng 2022; 8:1763-1790. [PMID: 35439408 PMCID: PMC9045676 DOI: 10.1021/acsbiomaterials.2c00026] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dexamethasone (DEX) has been widely used to treat a variety of diseases, including autoimmune diseases, allergies, ocular disorders, cancer, and, more recently, COVID-19. However, DEX usage is often restricted in the clinic due to its poor water solubility. When administered through a systemic route, it can elicit severe side effects, such as hypertension, peptic ulcers, hyperglycemia, and hydro-electrolytic disorders. There is currently much interest in developing efficient DEX-loaded nanoformulations that ameliorate adverse disease effects inhibiting advancements in scientific research. Various nanoparticles have been developed to selectively deliver drugs without destroying healthy cells or organs in recent years. In the present review, we have summarized some of the most attractive applications of DEX-loaded delivery systems, including liposomes, polymers, hydrogels, nanofibers, silica, calcium phosphate, and hydroxyapatite. This review provides our readers with a broad spectrum of nanomedicine approaches to deliver DEX safely.
Collapse
Affiliation(s)
- Vijay Sagar Madamsetty
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, Florida 32224, United States
| | - Reza Mohammadinejad
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7618866749, Iran
| | - Ilona Uzieliene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406 Vilnius, Lithuania
| | - Noushin Nabavi
- Department of Urologic Sciences, Vancouver Prostate Centre, Vancouver, British Columbia, Canada V6H 3Z6
| | - Ali Dehshahri
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Jomarien García-Couce
- Department of Radiology, Division of Translational Nanobiomaterials and Imaging, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
- Department of Polymeric Biomaterials, Biomaterials Center (BIOMAT), University of Havana, Havana 10600, Cuba
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1417755469, Iran
| | - Saeid Moghassemi
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels 1200, Belgium
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels 1200, Belgium
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7618866748, Iran
| | - Abbas Aghaei Afshar
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7618866749, Iran
| | - Ali Seyfoddin
- Drug Delivery Research Group, Auckland University of Technology (AUT), School of Science, Auckland 1010, New Zealand
| |
Collapse
|
5
|
Singh Y, Saxena A, Singh SP, Verma MK, Kumar A, Kumar A, Mrigesh M, Saxena MK. Calcium phosphate adjuvanted nanoparticles of outer membrane proteins of Salmonella Typhi as a candidate for vaccine development against Typhoid fever. J Med Microbiol 2022; 71. [PMID: 35476604 DOI: 10.1099/jmm.0.001529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. The conventional adjuvants used in vaccines have limitations like induction of an imbalanced Th1 and Th2 immune response. To overcome this limitation, novel adjuvants and newer forms of existing adjuvants like calcium phosphate nanoparticles are being tested.Hypothesis/Gap Statement. Calcium phosphate adjuvanted outer membrane proteins vaccine may work as an efficient, safe and cost effective vaccine against Salmonella Typhi.Aim. Our goals were to evaluate the potential of calcium phosphate nanoparticles as an adjuvant using outer membrane proteins (Omps) of Salmonella Typhi as antigens for immune response, with montanide (commercially available adjuvant) as control, and its toxicity in rats.Methodology. Calcium phosphate adjuvanted outer membrane proteins nanoparticles were synthesized and characterized. The efficacy of vaccine formulation in mice and toxicity assay were carried out in rats.Results. The calcium phosphate nanoparticles varying in size between 20-50 nm had entrapment efficiency of 41.5% and loading capacity of 54%. The calcium phosphate nanoparticle-Omps vaccine formulation (nanoparticle-Omps) induced a strong humoral immune response, which was significantly higher than the control group for the entire period of study. In the montanide-Omps group the initial very high immune response declined steeply and then remained steady. The immune response induced by nanoparticle-Omps did not change appreciably. The cell mediated immune response as measured by lymphocyte proliferation assay and delayed type hypersensitivity test showed a higher response (P<0.01) for the nanoparticles-Omps group as compared to montanide-Omps group. The bacterial clearance assay also showed higher clearance in the nanoparticles-Omps group as compared to montanide-Omps group (approx 1.4%). The toxicity analysis in rats showed no difference in the values of toxicity biomarkers and blood chemistry parameters, revealing vaccine formulation was non-toxic in rats.Conclusion. Calcium phosphate nanoparticles as adjuvant in vaccines is safe, have good encapsulation and loading capacity and induce a strong cell mediated, humoral and protective immune response.
Collapse
Affiliation(s)
- Yashpal Singh
- Department of Molecular Biology & Genetic Engineering, College of Basic Sciences & Humanities, Pantnagar, Uttarakhand, India
| | - Anjani Saxena
- Department of Veterinary Pharmacology & Toxicology, College of Veterinary & Animal Sciences, Pantnagar, Uttarakhand, India
| | - S P Singh
- Department of Veterinary Pharmacology & Toxicology, College of Veterinary & Animal Sciences, Pantnagar, Uttarakhand, India
| | - Manish Kumar Verma
- Department of Veterinary Pharmacology & Toxicology, College of Veterinary & Animal Sciences, Pantnagar, Uttarakhand, India
| | - Arun Kumar
- Department of Veterinary Surgery and Radiology, College of Veterinary & Animal Sciences, Pantnagar, Uttarakhand, India
| | - Avadhesh Kumar
- Department of Veterinary & Animal Husbandry Extension Education, College of Veterinary & Animal Sciences, Pantnagar, Uttarakhand, India
| | - Meena Mrigesh
- Department of Veterinary Anatomy, College of Veterinary & Animal Sciences, Pantnagar, Uttarakhand, India
| | - Mumtesh Kumar Saxena
- Department of Animal Genetics & Breeding, College of Veterinary & Animal Sciences G.B. Pant University of Agriculture & Technology, Pantnagar, Uttarakhand, India
| |
Collapse
|
6
|
Influence of Synthesis Conditions on Gadolinium-Substituted Tricalcium Phosphate Ceramics and Its Physicochemical, Biological, and Antibacterial Properties. NANOMATERIALS 2022; 12:nano12050852. [PMID: 35269340 PMCID: PMC8912835 DOI: 10.3390/nano12050852] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 01/27/2023]
Abstract
Gadolinium-containing calcium phosphates are promising contrast agents for various bioimaging modalities. Gadolinium-substituted tricalcium phosphate (TCP) powders with 0.51 wt% of gadolinium (0.01Gd-TCP) and 5.06 wt% of (0.1Gd-TCP) were synthesized by two methods: precipitation from aqueous solutions of salts (1) (Gd-TCP-pc) and mechano-chemical activation (2) (Gd-TCP-ma). The phase composition of the product depends on the synthesis method. The product of synthesis (1) was composed of β-TCP (main phase, 96%), apatite/chlorapatite (2%), and calcium pyrophosphate (2%), after heat treatment at 900 °C. The product of synthesis (2) was represented by β-TCP (main phase, 73%), apatite/chlorapatite (20%), and calcium pyrophosphate (7%), after heat treatment at 900 °C. The substitution of Ca2+ ions by Gd3+ in both β-TCP (main phase) and apatite (admixture) phases was proved by the electron paramagnetic resonance technique. The thermal stability and specific surface area of the Gd-TCP powders synthesized by two methods were significantly different. The method of synthesis also influenced the size and morphology of the prepared Gd-TCP powders. In the case of synthesis route (1), powders with particle sizes of tens of nanometers were obtained, while in the case of synthesis (2), the particle size was hundreds of nanometers, as revealed by transmission electron microscopy. The Gd-TCP ceramics microstructure investigated by scanning electron microscopy was different depending on the synthesis route. In the case of (1), ceramics with grains of 1–50 μm, pore sizes of 1–10 µm, and a bending strength of about 30 MPa were obtained; in the case of (2), the ceramics grain size was 0.4–1.4 μm, the pore size was 2 µm, and a bending strength of about 39 MPa was prepared. The antimicrobial activity of powders was tested for four bacteria (S. aureus, E. coli, S. typhimurium, and E. faecalis) and one fungus (C. albicans), and there was roughly 30% of inhibition of the micro-organism’s growth. The metabolic activity of the NCTC L929 cell and viability of the human dental pulp stem cell study demonstrated the absence of toxic effects for all the prepared ceramic materials doped with Gd ions, with no difference for the synthesis route.
Collapse
|
7
|
Nanoparticles Carrying NF-κB p65-Specific siRNA Alleviate Colitis in Mice by Attenuating NF-κB-Related Protein Expression and Pro-Inflammatory Cellular Mediator Secretion. Pharmaceutics 2022; 14:pharmaceutics14020419. [PMID: 35214151 PMCID: PMC8874689 DOI: 10.3390/pharmaceutics14020419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 12/22/2022] Open
Abstract
Ulcerative colitis is a disease that causes inflammation and ulcers in the colon and which is typically recurrent, and NF-κB proteins are important players during disease progression. Here, we assess the impact of silica-coated calcium phosphate nanoparticles carrying encapsulated siRNA against NF-κB p65 on a murine model of colitis. To this end, nanoparticles were injected intravenously (2.0 mg siRNA/kg body weight) into mice after colitis induction with dextran sulfate sodium or healthy ones. The disease activity index, the histopathological impact on the colon, the protein expression of several NF-κB-associated players, and the mediator secretion (colon tissue, blood) were analyzed. We found that the nanoparticles effectively alleviated the clinical and histopathological features of colitis. They further suppressed the expression of NF-κB proteins (e.g., p65, p50, p52, p100, etc.) in the colon. They finally attenuated the local (colon) or systemic (blood) pro-inflammatory mediator secretion (e.g., TNF-α, IFN-β, MCP-1, interleukins, etc.) as well as the leucocyte load of the spleen and mesenteric lymph nodes. The nanoparticle biodistribution in diseased animals was seen to pinpoint organs containing lymphoid entities (appendix, intestine, lung, etc.). Taken together, the nanoparticle-related silencing of p65 NF-κB protein expression could well be used for the treatment of ulcerative colitis in the future.
Collapse
|
8
|
van Rijt S, de Groot K, Leeuwenburgh SCG. Calcium phosphate and silicate-based nanoparticles: history and emerging trends. Tissue Eng Part A 2022; 28:461-477. [PMID: 35107351 DOI: 10.1089/ten.tea.2021.0218] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bulk calcium phosphates and silicate-based bioglasses have been extensively studied since the early 1970s due to their unique capacity to bind to host bone, which led to their clinical translation and commercialization in the 1980s. Since the mid-1990s, researchers have synthesized nanoscale calcium phosphate and silicate-based particles of increased specific surface area, chemical reactivity and solubility which offer specific advantages as compared to their bulk counterparts. This review provides a critical perspective on the history and emerging trends of these two classes of ceramic nanoparticles. Their synthesis and functional properties in terms of particle composition, size, shape, charge, dispersion, and toxicity are discussed as a function of relevant processing parameters. Specifically, emerging trends such as the influence of ion doping and mesoporosity on the biological and pharmaceutical performance of these nanoparticles are reviewed in more detail. Finally, a broad comparative overview is provided on the physicochemical properties and applicability of calcium phosphate and silicate-based nanoparticles within the fields of i) local delivery of therapeutic agents, ii) functionalization of biomaterial scaffolds or implant coatings, and iii) bio-imaging applications.
Collapse
Affiliation(s)
- Sabine van Rijt
- Maastricht University, 5211, MERLN Institute-Instructive Biomaterial Engineering, Maastricht, Limburg, Netherlands;
| | - Klaas de Groot
- Vrije Universiteit Amsterdam, 1190, Academic Center for Dentistry Amsterdam (ACTA)-Department of Oral Implantology and Prosthetic Dentistry, Amsterdam, Noord-Holland, Netherlands;
| | - Sander C G Leeuwenburgh
- Radboudumc, 6034, Dept. of Dentistry-Regenerative Biomaterials, Nijmegen, Gelderland, Netherlands;
| |
Collapse
|
9
|
Kuzma BA, Pence IJ, Greenfield DA, Ho A, Evans CL. Visualizing and quantifying antimicrobial drug distribution in tissue. Adv Drug Deliv Rev 2021; 177:113942. [PMID: 34437983 DOI: 10.1016/j.addr.2021.113942] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022]
Abstract
The biodistribution and pharmacokinetics of drugs are vital to the mechanistic understanding of their efficacy. Measuring antimicrobial drug efficacy has been challenging as plasma drug concentration is used as a surrogate for tissue drug concentration, yet typically does not reflect that at the intended site(s) of action. Utilizing an image-guided approach, it is feasible to accurately quantify the biodistribution and pharmacokinetics within the desired site(s) of action. We outline imaging modalities used in visualizing drug distribution with examples ranging from in vitro cellular drug uptake to clinical treatment of microbial infections. The imaging modalities of interest are: radio-labeling, magnetic resonance, mass spectrometry imaging, computed tomography, fluorescence, and Raman spectroscopy. We outline the progress, limitations, and future outlook for each methodology. Further advances in these optical approaches would benefit patients and researchers alike, as non-invasive imaging could yield more profound insights with a lower clinical burden than invasive measurement approaches used today.
Collapse
Affiliation(s)
- Benjamin A Kuzma
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA
| | - Isaac J Pence
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA
| | - Daniel A Greenfield
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA
| | - Alexander Ho
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA
| | - Conor L Evans
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA.
| |
Collapse
|
10
|
Zhang W, Zhou R, Yang Y, Peng S, Xiao D, Kong T, Cai X, Zhu B. Aptamer-mediated synthesis of multifunctional nano-hydroxyapatite for active tumour bioimaging and treatment. Cell Prolif 2021; 54:e13105. [PMID: 34382270 PMCID: PMC8450118 DOI: 10.1111/cpr.13105] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES The nano-hydroxyapatite (nHAp) is widely used to develop imaging probes and drug carriers due to its excellent bioactivity and biocompatibility. However, traditional methods usually need cumbersome and stringent conditions such as high temperature and post-modification to prepare the functionalized nHAp, which do not benefit the particles to enter cells due to the increased particle size. Herein, a biomimetic synthesis strategy was explored to achieve the AS1411-targeted tumour dual-model bioimaging using DNA aptamer AS1411 as a template. Then, the imaging properties and the biocompatibility of the synthesized AS-nFAp:Gd/Tb were further investigated. MATERIALS AND METHODS The AS-nFAp:Gd/Tb was prepared under mild conditions through a one-pot procedure with AS1411 as a template. Besides, the anticancer drug DOX was loaded to AS-nFAp:Gd/Tb so as to achieve the establishment of a multifunctional nano-probe that integrated the tumour diagnosis and treatment. The AS-nFAp:Gd/Tb was characterized by transmission electron microscopy (TEM), energy disperse X-ray Spectroscopy (EDS) mapping, X-ray photoelectron spectroscopy (XPS) spectrum, X-ray diffraction (XRD), fourier-transformed infrared (FTIR) spectroscopy, capillary electrophoresis analyses, zeta potential and particle sizes. The in vitro magnetic resonance imaging (MRI) and fluorescence imaging were performed on an MRI system and a confocal laser scanning microscope, respectively. The potential of the prepared multifunctional nHAp for a targeted tumour therapy was investigated by a CCK-8 kit. And the animal experiments were conducted on the basis of the guidelines approved by the Animal Care and Use Committee of Sichuan University, China. RESULTS In the presence of AS1411, the as-prepared AS-nFAp:Gd/Tb presented a needle-like morphology with good monodispersity and improved imaging performance. Furthermore, due to the specific binding between AS1411 and nucleolin up-expressed in cancer cells, the AS-nFAp:Gd/Tb possessed excellent AS1411-targeted fluorescence and MRI imaging properties. Moreover, after loading chemotherapy drug DOX, in vitro and in vivo studies showed that DOX@AS-nFAp:Gd/Tb could effectively deliver DOX to tumour tissues and exert a highly effective tumour inhibition without systemic toxicity compared with pure DOX. CONCLUSIONS The results indicated that the prepared multifunctional nHAp synthesized by a novel biomimetic strategy had outstanding capabilities of recognition and treatment for the tumour and had good biocompatibility; hence, it might have a potential clinical application in the future.
Collapse
Affiliation(s)
- Wenqing Zhang
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ronghui Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuting Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shuanglin Peng
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Southwest Medical University, Luzhou, China
| | - Dexuan Xiao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tingting Kong
- Department of Stomatology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bofeng Zhu
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Forensic Genetics, Multi-Omics Innovative Research Center of Forensic Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
Białas N, Müller EK, Epple M, Hilger I. Silica-coated calcium phosphate nanoparticles for gene silencing of NF-κB p65 by siRNA and their impact on cellular players of inflammation. Biomaterials 2021; 276:121013. [PMID: 34252802 DOI: 10.1016/j.biomaterials.2021.121013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/08/2021] [Accepted: 07/04/2021] [Indexed: 12/21/2022]
Abstract
The transcription factor NF-κB and its signaling cascade both play key roles in all inflammatory processes. The most critical member of the NF-κB transcription factor family is p65. We investigated the role of cationic silica-coated calcium phosphate nanoparticles (spherical, diameter by SEM 50-60 nm; zeta potential about +26 mV; stabilized by polyethyleneimine) carrying encapsulated siRNA against NF-κB p65 and their influence on inflamed cells. The nanoparticles were taken up by cells of the blood compartment involved in the inflammatory response, particularly by monocytes, and to a lesser extent by endothelial cells and B-cells, but not by T-cells. The particles were found in endolysosomes where they were dissolved at low pH and released the siRNA into the cytoplasm. This was confirmed by dissolution experiments of model nanoparticles in simulated endolysosomal medium (pH 4.7) and by intracellular co-localization studies of double-labeled nanoparticles (using a negatively charged model peptide for siRNA). The encapsulated functional siRNA reverted the p65 gene and protein expression in inflamed monocytes, the main cells in immune response and surveillance, almost back to the non-inflammatory condition. Additionally, the nanoparticles suppressed the pro-inflammatory cytokine expression profiles (TNF-α, IL-6, IFN-β) in inflamed J774A.1 monocytes. Taken together, such nanoparticles can be applied for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Nataniel Białas
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117, Essen, Germany
| | - Elena K Müller
- Dept. of Experimental Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, D-07740, Jena, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117, Essen, Germany.
| | - Ingrid Hilger
- Dept. of Experimental Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, D-07740, Jena, Germany.
| |
Collapse
|
12
|
Biesuz M, Galotta A, Motta A, Kermani M, Grasso S, Vontorová J, Tyrpekl V, Vilémová M, Sglavo VM. Speedy bioceramics: Rapid densification of tricalcium phosphate by ultrafast high-temperature sintering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112246. [PMID: 34225885 DOI: 10.1016/j.msec.2021.112246] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/02/2021] [Accepted: 06/04/2021] [Indexed: 12/23/2022]
Abstract
Due to unique osteogenic properties, tricalcium phosphate (TCP) has gained relevance in the field of bone repair. The development of novel and rapid sintering routes is of particular interest since TCP undergoes to high-temperature phase transitions and is widely employed in osteoconductive coatings on thermally-sensitive metal substrates. In the present work, TCP bioceramics was innovatively obtained by Ultrafast High-temperature Sintering (UHS). Ca-deficient hydroxyapatite nano-powder produced by mechanochemical synthesis of mussel shell-derived calcium carbonate was used to prepare the green samples by uniaxial pressing. These were introduced within a graphite felt which was rapidly heated by an electrical current flow, reaching heating rates exceeding 1200 °C min-1. Dense (> 93%) ceramics were manufactured in less than 3 min using currents between 25 and 30 A. Both β and α-TCP were detected in the sintered components with proportions depending on the applied current. Preliminary tests confirmed that the artifacts do not possess cytotoxic effects and possess mechanical properties similar to conventionally sintered materials. The overall results prove the applicability of UHS to bioceramics paving the way to new rapid processing routes for biomedical components.
Collapse
Affiliation(s)
- Mattia Biesuz
- Institute of Plasma Physics of the Czech Academy of Sciences, Za Slovankou 3, 182 00 Prague, Czech Republic; Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 2030 Prague, Czech Republic; Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38122 Trento, Italy.
| | - Anna Galotta
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38122 Trento, Italy
| | - Antonella Motta
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38122 Trento, Italy
| | - Milad Kermani
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong, Chengdu 610031, PR China
| | - Salvatore Grasso
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong, Chengdu 610031, PR China
| | - Jiřina Vontorová
- Faculty of Materials Science and Technology, VŠB - Technical University of Ostrava, 17.listopadu 15, 708 33 Ostrava - Poruba, Czech Republic
| | - Václav Tyrpekl
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 2030 Prague, Czech Republic
| | - Monika Vilémová
- Institute of Plasma Physics of the Czech Academy of Sciences, Za Slovankou 3, 182 00 Prague, Czech Republic
| | - Vincenzo M Sglavo
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38122 Trento, Italy
| |
Collapse
|
13
|
Hosseini S, Epple M. Suppositories with bioactive calcium phosphate nanoparticles for intestinal transfection and gene silencing. NANO SELECT 2020. [DOI: 10.1002/nano.202000150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Shabnam Hosseini
- Inorganic Chemistry and Centre for Nanointegration Duisburg‐Essen (CeNIDE) University of Duisburg‐Essen Essen Germany
| | - Matthias Epple
- Inorganic Chemistry and Centre for Nanointegration Duisburg‐Essen (CeNIDE) University of Duisburg‐Essen Essen Germany
| |
Collapse
|
14
|
Jin Z, Chang J, Dou P, Jin S, Jiao M, Tang H, Jiang W, Ren W, Zheng S. Tumor Targeted Multifunctional Magnetic Nanobubbles for MR/US Dual Imaging and Focused Ultrasound Triggered Drug Delivery. Front Bioeng Biotechnol 2020; 8:586874. [PMID: 33365305 PMCID: PMC7750502 DOI: 10.3389/fbioe.2020.586874] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/16/2020] [Indexed: 11/13/2022] Open
Abstract
The development of multifunctional nanoplatforms that are safe and have multiple therapeutic functions integrated with dual- or multi-imaging modality is one of the most urgent medical requirements for active cancer therapy. In our study, we prepared multifunctional magnetic nanobubbles (MF-MNBs) by co-encapsulating superparamagnetic iron oxide nanoparticles (SPIONs) and doxorubicin into polylactideco–glycolide–polyethylene glycol–folate (PLGA-PEG-FA) polymer-based nanobubbles for tumor-targeted ultrasound (US)/magnetic resonance (MR) imaging and focused ultrasound (FUS)-triggered drug delivery. Hydrophobic SPIONs were successfully embedded into MF-MNBs by a typical double emulsion process. The MF-MNBs were highly dispersed with well-defined spherical morphology and an average diameter of 208.4 ± 12.58 nm. The potential of MF-MNB as a dual-modal contrast agent for US and MR imaging was investigated via in vitro study, and the MF-MNB exhibits promising US/MR contrast ability. Moreover, tumor targeting ability was further enhanced by folate conjugation and assessed through in vitro cell test. Furthermore, FUS, as a non-invasive and remote-control technique, was adopted to trigger the release of doxorubicin from MF-MNB and generate the sonoporation effect to enhance drug release and cellular uptake of MF-MNBs. The 4T1 cell viability was significantly decreased by FA ligand-receptor-mediated targeting and FUS sonication. In addition, the developed MF-MNB also exhibits enhanced accumulation in tumor site by FA ligand-receptor-mediated tumor targeting, in which the accumulation of MF-MNB was further enhanced by FUS sonication. Hence, we believe that the MF-MNB could be a promising drug nanocarrier for US/MR-guided anticancer drug delivery to improve cancer treatment efficacy.
Collapse
Affiliation(s)
- Zhen Jin
- College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, China
| | - Jinlong Chang
- College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, China
| | - Peipei Dou
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Shang Jin
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Min Jiao
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Heyun Tang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Wenshuai Jiang
- College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, China
| | - Wu Ren
- College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, China
| | - Shaohui Zheng
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
15
|
Sushnitha M, Evangelopoulos M, Tasciotti E, Taraballi F. Cell Membrane-Based Biomimetic Nanoparticles and the Immune System: Immunomodulatory Interactions to Therapeutic Applications. Front Bioeng Biotechnol 2020; 8:627. [PMID: 32626700 PMCID: PMC7311577 DOI: 10.3389/fbioe.2020.00627] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/21/2020] [Indexed: 12/21/2022] Open
Abstract
Nanoparticle-based drug delivery systems have been synthesized from a wide array of materials. The therapeutic success of these platforms hinges upon their ability to favorably interact with the biological environment (both systemically and locally) and recognize the diseased target tissue. The immune system, composed of a highly coordinated organization of cells trained to recognize foreign bodies, represents a key mediator of these interactions. Although components of this system may act as a barrier to nanoparticle (NP) delivery, the immune system can also be exploited to target and trigger signaling cues that facilitate the therapeutic response stemming from systemic administration of NPs. The nano-bio interface represents the key facilitator of this communication exchange, where the surface properties of NPs govern their in vivo fate. Cell membrane-based biomimetic nanoparticles have emerged as one approach to achieve targeted drug delivery by actively engaging and communicating with the biological milieu. In this review, we will highlight the relationship between these biomimetic nanoparticles and the immune system, emphasizing the role of tuning the nano-bio interface in the immunomodulation of diseases. We will also discuss the therapeutic applications of this approach with biomimetic nanoparticles, focusing on specific diseases ranging from cancer to infectious diseases. Lastly, we will provide a critical evaluation on the current state of this field of cell membrane-based biomimetic nanoparticles and its future directions in immune-based therapy.
Collapse
Affiliation(s)
- Manuela Sushnitha
- Department of Bioengineering, Rice University, Houston, TX, United States
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX, United States
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, United States
| | - Michael Evangelopoulos
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX, United States
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, United States
| | - Ennio Tasciotti
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX, United States
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, United States
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX, United States
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
16
|
Zinc and chromium co-doped calcium hydroxyapatite: Sol-gel synthesis, characterization, behaviour in simulated body fluid and phase transformations. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121202] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Jabalera Y, Oltolina F, Prat M, Jimenez-Lopez C, Fernández-Sánchez JF, Choquesillo-Lazarte D, Gómez-Morales J. Eu-Doped Citrate-Coated Carbonated Apatite Luminescent Nanoprobes for Drug Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E199. [PMID: 31979272 PMCID: PMC7074876 DOI: 10.3390/nano10020199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 12/04/2022]
Abstract
In the field of Nanomedicine, there is an increasing demand for new inorganic nanophosphors with low cytotoxicity and efficient loading-release ability of drugs for applications in bioimaging and drug delivery. This work assesses the potentiality of matured Eu-doped citrate-coated carbonated apatite nanoparticles to be used as theranostic platforms, for bioimaging, as luminescent nanoprobes, and for drug delivery applications, using Doxorubicin as a model drug. The drug adsorption isotherm fits the Langmuir-Freundlich (LF) model, showing that the Eu:cit-cAp nanoparticles can carry a maximum of 0.29 ± 0.02 mg Doxo mg Eu:cit-cAp-1 (Qmax). The affinity constant KFL for this binding is 44 ± 2 mL mg-1, and the cooperativity coefficient r is 6 ± 1. The nanoparticle suspensions presented charge reversion from negative to positive after loading with Doxo as revealed by the ζ-potential versus pH characterization. The release of drug from the loaded nanoparticles was found to be strongly pH-dependent, being around 5 wt % at physiological pH 7.4 and 20 wt % at pH 5, in experiments lasting 24 h. Luminescence spectroscopic measurements of Doxo-loaded nanoparticles revealed the increase of luminescence with a decrease in the amount of adsorbed Doxo, due to the so-called inner filter effect. The nanoparticles free of Doxo were cytocompatible when interacted with two human cell lines derived respectively from a gastric carcinoma (GTL-16), and a hepatocarcinoma (Huh7), while Doxo-loaded nanoparticles displayed significant toxicity in a dose-dependent relationship. Therefore, the new nanoassemblies might have a dual function, as nanoprobes in bioimaging by detecting the fate of the nanoparticles in biological environments, and for monitoring the delivery of the drug in such environments, by measuring the rise of the luminescence provided by the desorption of Doxo.
Collapse
Affiliation(s)
- Ylenia Jabalera
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18002 Granada, Spain; (Y.J.); (F.O.); (C.J.-L.)
| | - Francesca Oltolina
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18002 Granada, Spain; (Y.J.); (F.O.); (C.J.-L.)
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy;
| | - Maria Prat
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy;
| | - Concepcion Jimenez-Lopez
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18002 Granada, Spain; (Y.J.); (F.O.); (C.J.-L.)
| | - Jorge F. Fernández-Sánchez
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain;
| | - Duane Choquesillo-Lazarte
- Laboratorio de Estudios Cristalográficos, IACT-CSIC-Universidad de Granada, Avda. Las Palmeras, 4, 18100 Armilla, Spain;
| | - Jaime Gómez-Morales
- Laboratorio de Estudios Cristalográficos, IACT-CSIC-Universidad de Granada, Avda. Las Palmeras, 4, 18100 Armilla, Spain;
| |
Collapse
|