1
|
Xu Z. An intelligent fault detection approach for digital integrated circuits through graph neural networks. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:9992-10006. [PMID: 37322920 DOI: 10.3934/mbe.2023438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
To quickly and accurately realize the fault diagnosis of analog circuits, this paper introduces the graph neural network method and proposes a fault diagnosis method for digital integrated circuits. The method filters the signals present in the digital integrated circuit to remove noise signals and redundant signals and analyzes the digital integrated circuit characteristics after the filtering process to obtain the digital integrated circuit leakage current variation. To the problem of the lack of a parametric model for Through-Silicon Via (TSV) defect modeling, the method of TSV defect modeling based on finite element analysis is proposed. The common TSV defects such as voids, open circuits, leakage, and unaligned micro-pads are modeled and analyzed by using industrial-grade FEA tools Q3D and HFSS, and the equivalent circuit model of resistance inductance conductance capacitance (RLGC) for each defect is obtained. Finally, the superior performance of this paper in fault diagnosis accuracy and fault diagnosis efficiency is verified by comparing and analyzing with the traditional graph neural network method and random graph neural network method for active filter circuits.
Collapse
Affiliation(s)
- Zulin Xu
- SDU-ANU Joint Science College, Shandong University, Shandong 264209, China
| |
Collapse
|
2
|
Chen M, Zhang X, Ju Y, Liu Q, Ding Y. iPseU-TWSVM: Identification of RNA pseudouridine sites based on TWSVM. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:13829-13850. [PMID: 36654069 DOI: 10.3934/mbe.2022644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Biological sequence analysis is an important basic research work in the field of bioinformatics. With the explosive growth of data, machine learning methods play an increasingly important role in biological sequence analysis. By constructing a classifier for prediction, the input sequence feature vector is predicted and evaluated, and the knowledge of gene structure, function and evolution is obtained from a large amount of sequence information, which lays a foundation for researchers to carry out in-depth research. At present, many machine learning methods have been applied to biological sequence analysis such as RNA gene recognition and protein secondary structure prediction. As a biological sequence, RNA plays an important biological role in the encoding, decoding, regulation and expression of genes. The analysis of RNA data is currently carried out from the aspects of structure and function, including secondary structure prediction, non-coding RNA identification and functional site prediction. Pseudouridine (У) is the most widespread and rich RNA modification and has been discovered in a variety of RNAs. It is highly essential for the study of related functional mechanisms and disease diagnosis to accurately identify У sites in RNA sequences. At present, several computational approaches have been suggested as an alternative to experimental methods to detect У sites, but there is still potential for improvement in their performance. In this study, we present a model based on twin support vector machine (TWSVM) for У site identification. The model combines a variety of feature representation techniques and uses the max-relevance and min-redundancy methods to obtain the optimum feature subset for training. The independent testing accuracy is improved by 3.4% in comparison to current advanced У site predictors. The outcomes demonstrate that our model has better generalization performance and improves the accuracy of У site identification. iPseU-TWSVM can be a helpful tool to identify У sites.
Collapse
Affiliation(s)
- Mingshuai Chen
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China
| | - Xin Zhang
- Beidahuang Industry Group General Hospital, Harbin, China
| | - Ying Ju
- School of Informatics, Xiamen University, Xiamen, China
| | - Qing Liu
- Department of Anesthesiology, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, China
| | - Yijie Ding
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China
| |
Collapse
|
3
|
Barros M, Moitinho A, Couto FM. SeEn: Sequential enriched datasets for sequence-aware recommendations. Sci Data 2022; 9:478. [PMID: 35927282 PMCID: PMC9352715 DOI: 10.1038/s41597-022-01598-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 07/27/2022] [Indexed: 11/09/2022] Open
Abstract
The recommendation of items based on the sequential past users' preferences has evolved in the last few years, mostly due to deep learning approaches, such as BERT4Rec. However, in scientific fields, recommender systems for recommending the next best item are not widely used. The main goal of this work is to improve the results for the recommendation of the next best item in scientific domains using sequence aware datasets and algorithms. In the first part of this work, we present the adaptation of a previous method (LIBRETTI) for creating sequential recommendation datasets for scientific fields. The results were assessed in Astronomy and Chemistry. In the second part of this work, we propose a new approach to improve the datasets, not the algorithms, to obtain better recommendations. The new hybrid approach is called sequential enrichment (SeEn), which consists of adding to a sequence of items the n most similar items after each original item. The results show that the enriched sequences obtained better results than the original ones. The Chemistry dataset improved by approximately seven percentage points and the Astronomy dataset by 16 percentage points for Hit Ratio and Normalized Discounted Cumulative Gain.
Collapse
Affiliation(s)
- Marcia Barros
- LASIGE, Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal. .,CENTRA, Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.
| | - André Moitinho
- CENTRA, Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Francisco M Couto
- LASIGE, Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
4
|
Tong X, Wang D, Ding X, Tan X, Ren Q, Chen G, Rong Y, Xu T, Huang J, Jiang H, Zheng M, Li X. Blood-brain barrier penetration prediction enhanced by uncertainty estimation. J Cheminform 2022; 14:44. [PMID: 35799215 PMCID: PMC9264551 DOI: 10.1186/s13321-022-00619-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 05/28/2022] [Indexed: 01/01/2023] Open
Abstract
Blood–brain barrier is a pivotal factor to be considered in the process of central nervous system (CNS) drug development, and it is of great significance to rapidly explore the blood–brain barrier permeability (BBBp) of compounds in silico in early drug discovery process. Here, we focus on whether and how uncertainty estimation methods improve in silico BBBp models. We briefly surveyed the current state of in silico BBBp prediction and uncertainty estimation methods of deep learning models, and curated an independent dataset to determine the reliability of the state-of-the-art algorithms. The results exhibit that, despite the comparable performance on BBBp prediction between graph neural networks-based deep learning models and conventional physicochemical-based machine learning models, the GROVER-BBBp model shows greatly improvement when using uncertainty estimations. In particular, the strategy combined Entropy and MC-dropout can increase the accuracy of distinguishing BBB + from BBB − to above 99% by extracting predictions with high confidence level (uncertainty score < 0.1). Case studies on preclinical/clinical drugs for Alzheimer’ s disease and marketed antitumor drugs that verified by literature proved the application value of uncertainty estimation enhanced BBBp prediction model, that may facilitate the drug discovery in the field of CNS diseases and metastatic brain tumors.
Collapse
Affiliation(s)
- Xiaochu Tong
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Dingyan Wang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Xiaoyu Ding
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Xiaoqin Tan
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Qun Ren
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.,Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Geng Chen
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China
| | - Yu Rong
- Tencent AI Lab, Shenzhen, 518057, China
| | | | | | - Hualiang Jiang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China. .,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| | - Xutong Li
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China. .,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
5
|
Li X, Lu L, Chen L. Identification of protein functions in mouse with a label space partition method. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:3820-3842. [PMID: 35341276 DOI: 10.3934/mbe.2022176] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Protein is very important for almost all living creatures because it participates in most complicated and essential biological processes. Determining the functions of given proteins is one of the most essential problems in protein science. Such determination can be conducted through traditional experiments. However, the experimental methods are always time-consuming and of high costs. In recent years, computational methods give useful aids for identification of protein functions. This study presented a new multi-label classifier for identifying functions of mouse proteins. Due to the number of functional types, which were termed as labels in the classification procedure, a label space partition method was employed to divide labels into some partitions. On each partition, a multi-label classifier was constructed. The classifiers based on all partitions were integrated in the proposed classifier. The cross-validation results proved that the proposed classifier was of good performance. Classifiers with label partition were superior to those without label partition or with random label partition.
Collapse
Affiliation(s)
- Xuan Li
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Lin Lu
- Department of Radiology, Columbia University Medical Center, New York 10032, USA
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
| |
Collapse
|
6
|
Barros M, Moitinho A, Couto FM. Hybrid semantic recommender system for chemical compounds in large-scale datasets. J Cheminform 2021; 13:15. [PMID: 33622374 PMCID: PMC7903631 DOI: 10.1186/s13321-021-00495-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/10/2021] [Indexed: 12/16/2022] Open
Abstract
The large, and increasing, number of chemical compounds poses challenges to the exploration of such datasets. In this work, we propose the usage of recommender systems to identify compounds of interest to scientific researchers. Our approach consists of a hybrid recommender model suitable for implicit feedback datasets and focused on retrieving a ranked list according to the relevance of the items. The model integrates collaborative-filtering algorithms for implicit feedback (Alternating Least Squares and Bayesian Personalized Ranking) and a new content-based algorithm, using the semantic similarity between the chemical compounds in the ChEBI ontology. The algorithms were assessed on an implicit dataset of chemical compounds, CheRM-20, with more than 16.000 items (chemical compounds). The hybrid model was able to improve the results of the collaborative-filtering algorithms, by more than ten percentage points in most of the assessed evaluation metrics.
Collapse
Affiliation(s)
- Marcia Barros
- LASIGE, Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal. .,CENTRA, Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal.
| | - Andre Moitinho
- CENTRA, Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Francisco M Couto
- LASIGE, Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| |
Collapse
|
7
|
Lv Z, Ding H, Wang L, Zou Q. A Convolutional Neural Network Using Dinucleotide One-hot Encoder for identifying DNA N6-Methyladenine Sites in the Rice Genome. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2020.09.056] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Chen T, Wang X, Chu Y, Wang Y, Jiang M, Wei DQ, Xiong Y. T4SE-XGB: Interpretable Sequence-Based Prediction of Type IV Secreted Effectors Using eXtreme Gradient Boosting Algorithm. Front Microbiol 2020; 11:580382. [PMID: 33072049 PMCID: PMC7541839 DOI: 10.3389/fmicb.2020.580382] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/21/2020] [Indexed: 12/19/2022] Open
Abstract
Type IV secreted effectors (T4SEs) can be translocated into the cytosol of host cells via type IV secretion system (T4SS) and cause diseases. However, experimental approaches to identify T4SEs are time- and resource-consuming, and the existing computational tools based on machine learning techniques have some obvious limitations such as the lack of interpretability in the prediction models. In this study, we proposed a new model, T4SE-XGB, which uses the eXtreme gradient boosting (XGBoost) algorithm for accurate identification of type IV effectors based on optimal features based on protein sequences. After trying 20 different types of features, the best performance was achieved when all features were fed into XGBoost by the 5-fold cross validation in comparison with other machine learning methods. Then, the ReliefF algorithm was adopted to get the optimal feature set on our dataset, which further improved the model performance. T4SE-XGB exhibited highest predictive performance on the independent test set and outperformed other published prediction tools. Furthermore, the SHAP method was used to interpret the contribution of features to model predictions. The identification of key features can contribute to improved understanding of multifactorial contributors to host-pathogen interactions and bacterial pathogenesis. In addition to type IV effector prediction, we believe that the proposed framework can provide instructive guidance for similar studies to construct prediction methods on related biological problems. The data and source code of this study can be freely accessed at https://github.com/CT001002/T4SE-XGB.
Collapse
Affiliation(s)
- Tianhang Chen
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangeng Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Yanyi Chu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Peng Cheng Laboratory, Shenzhen, China
| | - Yanjing Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Mingming Jiang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Peng Cheng Laboratory, Shenzhen, China
| | - Yi Xiong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
9
|
Wang C, Zhang Y, Han S. Its2vec: Fungal Species Identification Using Sequence Embedding and Random Forest Classification. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2468789. [PMID: 32566672 PMCID: PMC7275950 DOI: 10.1155/2020/2468789] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/20/2020] [Accepted: 03/25/2020] [Indexed: 12/19/2022]
Abstract
Fungi play essential roles in many ecological processes, and taxonomic classification is fundamental for microbial community characterization and vital for the study and preservation of fungal biodiversity. To cope with massive fungal barcode data, tools that can implement extensive volumes of barcode sequences, especially the internal transcribed spacer (ITS) region, are necessary. However, high variation in the ITS region and computational requirements for processing high-dimensional features remain challenging for existing predictors. In this study, we developed Its2vec, a bioinformatics tool for the classification of fungal ITS barcodes to the species level. An ITS database covering more than 25,000 species in a broad range of fungal taxa was assembled. For dimensionality reduction, a word embedding algorithm was used to represent an ITS sequence as a dense low-dimensional vector. A random forest-based classifier was built for species identification. Benchmarking results showed that our model achieved an accuracy comparable to that of several state-of-the-art predictors, and more importantly, it could implement large datasets and greatly reduce dimensionality. We expect the Its2vec model to be helpful for fungal species identification and, thus, for revealing microbial community structures and in deepening our understanding of their functional mechanisms.
Collapse
Affiliation(s)
- Chao Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Ying Zhang
- Department of Pharmacy, Heilongjiang Province Land Reclamation Headquarters General Hospital, Harbin 150088, China
| | - Shuguang Han
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 60054, China
| |
Collapse
|
10
|
Lv Z, Zhang J, Ding H, Zou Q. RF-PseU: A Random Forest Predictor for RNA Pseudouridine Sites. Front Bioeng Biotechnol 2020; 8:134. [PMID: 32175316 PMCID: PMC7054385 DOI: 10.3389/fbioe.2020.00134] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 02/10/2020] [Indexed: 12/21/2022] Open
Abstract
One of the ubiquitous chemical modifications in RNA, pseudouridine modification is crucial for various cellular biological and physiological processes. To gain more insight into the functional mechanisms involved, it is of fundamental importance to precisely identify pseudouridine sites in RNA. Several useful machine learning approaches have become available recently, with the increasing progress of next-generation sequencing technology; however, existing methods cannot predict sites with high accuracy. Thus, a more accurate predictor is required. In this study, a random forest-based predictor named RF-PseU is proposed for prediction of pseudouridylation sites. To optimize feature representation and obtain a better model, the light gradient boosting machine algorithm and incremental feature selection strategy were used to select the optimum feature space vector for training the random forest model RF-PseU. Compared with previous state-of-the-art predictors, the results on the same benchmark data sets of three species demonstrate that RF-PseU performs better overall. The integrated average leave-one-out cross-validation and independent testing accuracy scores were 71.4% and 74.7%, respectively, representing increments of 3.63% and 4.77% versus the best existing predictor. Moreover, the final RF-PseU model for prediction was built on leave-one-out cross-validation and provides a reliable and robust tool for identifying pseudouridine sites. A web server with a user-friendly interface is accessible at http://148.70.81.170:10228/rfpseu.
Collapse
Affiliation(s)
- Zhibin Lv
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Jun Zhang
- Rehabilitation Department, Heilongjiang Province Land Reclamation Headquarters General Hospital, Harbin, China
| | - Hui Ding
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|