1
|
Zhao R, Lan D, Xia B, Dong M, Mu J, Zhao Y. PET-Based Dual-Modal Probes for In Vivo Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409713. [PMID: 39873346 DOI: 10.1002/smll.202409713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/07/2024] [Indexed: 01/30/2025]
Abstract
Molecular imaging has significantly advanced the detection and analysis of in vivo metabolic processes, while single-modal techniques remain limited. Dual-modal imaging, particularly positron emission tomography (PET)-based combinations has emerged as a powerful solution, offering enhanced capabilities through integration with magnetic resonance imaging (MRI) or near-infrared fluorescence (NIRF) imaging. This review highlights recent progress in PET-based dual-modal imaging, focusing on the development of various bimodal probes derived from antibodies, nanoparticles, and peptides, and key applications including image-guided surgery and disease assessment. PET-based dual-modal imaging holds substantial potential for advancing research and diagnostics by improving resolution and providing functional insights. By combining complementary modalities, these systems deliver a more comprehensive view of disease processes, leading to more accurate diagnoses and targeted treatments. Future research prioritizes optimizing probe design for enhanced biocompatibility and safety, facilitating clinical translation, and broadens applications beyond cancer. Through interdisciplinary collaboration, PET-based dual-modal probes are poised to play a pivotal role in improving patient outcomes, particularly in diagnosing and managing complex diseases.
Collapse
Affiliation(s)
- Runge Zhao
- Department of Nuclear Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Deren Lan
- Department of Nuclear Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Beibei Xia
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - MengJie Dong
- Department of Nuclear Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Jing Mu
- Department of Nuclear Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Yongsheng Zhao
- Department of Nuclear Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| |
Collapse
|
2
|
Gharibshahian E, Gharibshahian M, Tafreshi MJ, Bahraminasab M, Arab S. The effect of capping agent on morphology, surface functionalization, and bio-compatibility properties of KTiOPO 4 nanoparticles. Heliyon 2024; 10:e40513. [PMID: 39654727 PMCID: PMC11626051 DOI: 10.1016/j.heliyon.2024.e40513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/26/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024] Open
Abstract
KTiOPO4 (KTP) nanoparticles (NPs) are potential materials as biolabels for long-term imaging. Optimizing their properties can lead to higher imaging efficiency and lower cytotoxicity and side effects. In this study, these nanoparticles were synthesized using the co-precipitation method and capping agents of oxalic acid and glycine. The capping agent's effect on the structural, optical, morphological, hemocompatibility, and biocompatibility properties of the obtained nanoparticles was studied. The smallest (12.56 nm) grain size and the lowest lattice strain (0.0024) were obtained using 1:1 and 1:3 mol ratios of glycine, respectively. Oxalic acid as a capping agent resulted in needle-type, flower-type, and oval-form NPs. Polygonal tablet form, cubic, and polyhedral forms of KTP NPs were synthesized using glycine. C-O-H bending bonds, O-H, N-H, and carbonyl (C=O) stretching bonds remain on the surface of synthesized NPs after heat treatment and functionalization of their surface. Our results showed that the surface functionalization modifies the biocompatibility properties of NPs. The 1:3 mol ratio of oxalic acid as a capping agent resulted in the perfect KTP NPs for long-term imaging studies. The presence of hydroxyl groups improved the biocompatibility of obtained KTP NPs using a 1:3 mol ratio of oxalic acid over time. The needle form of obtained NPs resulted in an increase in cell cytotoxicity at higher concentrations.
Collapse
Affiliation(s)
- Elaheh Gharibshahian
- Department of Physics, National University of Skills (NUS), Tehran, Iran
- Faculty of Physics, Semnan University, Semnan, Iran
| | - Maliheh Gharibshahian
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Marjan Bahraminasab
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Samaneh Arab
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
3
|
Pan T, Su L, Zhang Y, Xu L, Chen Y. Advances in Bio-Optical Imaging Systems for Spatiotemporal Monitoring of Intestinal Bacteria. Mol Nutr Food Res 2024; 68:e2300760. [PMID: 38491399 DOI: 10.1002/mnfr.202300760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/26/2024] [Indexed: 03/18/2024]
Abstract
Vast and complex intestinal communities are regulated and balanced through interactions with their host organisms, and disruption of gut microbial balance can cause a variety of diseases. Studying the mechanisms of pathogenic intestinal flora in the host and early detection of bacterial translocation and colonization can guide clinical diagnosis, provide targeted treatments, and improve patient prognosis. The use of in vivo imaging techniques to track microorganisms in the intestine, and study structural and functional changes of both cells and proteins, may clarify the governing equilibrium between the flora and host. Despite the recent rapid development of in vivo imaging of intestinal microecology, determining the ideal methodology for clinical use remains a challenge. Advances in optics, computer technology, and molecular biology promise to expand the horizons of research and development, thereby providing exciting opportunities to study the spatio-temporal dynamics of gut microbiota and the origins of disease. Here, this study reviews the characteristics and problems associated with optical imaging techniques, including bioluminescence, conventional fluorescence, novel metabolic labeling methods, nanomaterials, intelligently activated imaging agents, and photoacoustic (PA) imaging. It hopes to provide a valuable theoretical basis for future bio-intelligent imaging of intestinal bacteria.
Collapse
Affiliation(s)
- Tongtong Pan
- Hepatology Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University & Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Ouhai District, Wenzhou, Zhejiang, 325035, China
| | - Lihuang Su
- The First Affiliated Hospital of Wenzhou Medical University, Ouhai District, Wenzhou, Zhejiang, 325035, China
| | - Yiying Zhang
- Alberta Institute, Wenzhou Medical University, Ouhai District, Wenzhou, Zhejiang, 325035, China
| | - Liang Xu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yongping Chen
- Hepatology Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University & Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Ouhai District, Wenzhou, Zhejiang, 325035, China
| |
Collapse
|
4
|
Li C, Huang J, Yuan L, Xie W, Ying Y, Li C, Yu Y, Pan Y, Qu W, Hao H, Algharib SA, Chen D, Xie S. Recent progress of emitting long-wavelength carbon dots and their merits for visualization tracking, target delivery and theranostics. Theranostics 2023; 13:3064-3102. [PMID: 37284447 PMCID: PMC10240821 DOI: 10.7150/thno.80579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/07/2023] [Indexed: 06/08/2023] Open
Abstract
As a novel strategy for in vivo visualization tracking and monitoring, carbon dots (CDs) emitting long wavelengths (LW, 600-950 nm) have received tremendous attention due to their deep tissue penetration, low photon scattering, satisfactory contrast resolution and high signal-to-background ratios. Although, the mechanism of CDs emitting LW remains controversial and what properties are best for in vivo visualization have not been specifically elucidated, it is more conducive to the in vivo application of LW-CDs through rational design and ingenious synthesis based on the appreciation of the luminescence mechanism. Therefore, this review analyzes the current tracer technologies applied in vivo and their advantages and disadvantages, with emphasis on the physical mechanism of emitting LW fluorescence for in vivo imaging. Subsequently, the general properties and merits of LW-CDs for tracking and imaging are summarized. More importantly, the factors affecting the synthesis of LW-CDs and its luminescence mechanism are highlighted. Simultaneously, the application of LW-CDs for disease diagnosis, integration of diagnosis and therapy are summarized. Finally, the bottlenecks and possible future directions of LW-CDs in visualization tracking and imaging in vivo are detailly discussed.
Collapse
Affiliation(s)
- Chao Li
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jiamin Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Liwen Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Wenqing Xie
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yupeng Ying
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Chengzhe Li
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yahang Yu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yuanhu Pan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Wei Qu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Haihong Hao
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Samah Attia Algharib
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, QG, Egypt
| | - Dongmei Chen
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shuyu Xie
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
5
|
Deshmukh S, Pawar K, Koli V, Pachfule P. Emerging Graphitic Carbon Nitride-based Nanobiomaterials for Biological Applications. ACS APPLIED BIO MATERIALS 2023; 6:1339-1367. [PMID: 37011107 DOI: 10.1021/acsabm.2c01016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Graphitic carbon nitride (g-CN) based nanostructures are distinctive materials with unique compositional, structural, optical, and electronic properties with exceptional band structure, moderate surface area, and exceptional thermal and chemical stability. Because of these properties, g-CN based nanomaterials have shown promising applications and higher performance in the biological avenue. This review covers the state-of-the-art synthetic strategies used for the preparation of the materials, the basic structure, and a panorama of different optimization strategies leading to improved physicochemical properties responsible for the biological application. The following sections include the recent progress in the use of g-CN based nanobiomaterials for biosensors, bioimaging, photodynamic therapy, drug delivery, chemotherapy, and the antimicrobial segment. Furthermore, we have summarized the role and evaluation of biosafety and biocompatibility of the material. Finally, the unresolved issues, plausible challenges, current status, and future perspectives for the development and design of g-CN have been summarized and are expected to promote a clinical path for the medical sector and human well-being.
Collapse
Affiliation(s)
- Shamkumar Deshmukh
- Department of Chemistry, Damani Bhairuratan Fatechand, Dayanand College of Arts and Science, Solapur 413002, India
| | - Krishna Pawar
- School of Nanoscience and Technology, Shivaji University, Kolhapur 416004, India
| | - Valmiki Koli
- Department of Physics, National Dong Hwa University, Shou-Feng, Hualien 97401, Taiwan
| | - Pradip Pachfule
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700106, India
| |
Collapse
|
6
|
Trifanova EM, Babayeva G, Khvorostina MA, Atanova AV, Nikolaeva ME, Sochilina AV, Khaydukov EV, Popov VK. Photoluminescent Scaffolds Based on Natural and Synthetic Biodegradable Polymers for Bioimaging and Tissue Engineering. Life (Basel) 2023; 13:life13040870. [PMID: 37109400 PMCID: PMC10141962 DOI: 10.3390/life13040870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
Non-invasive visualization and monitoring of tissue-engineered structures in a living organism is a challenge. One possible solution to this problem is to use upconversion nanoparticles (UCNPs) as photoluminescent nanomarkers in scaffolds. We synthesized and studied scaffolds based on natural (collagen-COL and hyaluronic acid-HA) and synthetic (polylactic-co-glycolic acids-PLGA) polymers loaded with β-NaYF4:Yb3+, Er3+ nanocrystals (21 ± 6 nm). Histomorphological analysis of tissue response to subcutaneous implantation of the polymer scaffolds in BALB/c mice was performed. The inflammatory response of the surrounding tissues was found to be weak for scaffolds based on HA and PLGA and moderate for COL scaffolds. An epi-luminescent imaging system with 975 nm laser excitation was used for in vivo visualization and photoluminescent analysis of implanted scaffolds. We demonstrated that the UCNPs' photoluminescent signal monotonously decreased in all the examined scaffolds, indicating their gradual biodegradation followed by the release of photoluminescent nanoparticles into the surrounding tissues. In general, the data obtained from the photoluminescent analysis correlated satisfactorily with the histomorphological analysis.
Collapse
Affiliation(s)
- Ekaterina M Trifanova
- Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, 119333 Moscow, Russia
| | - Gulalek Babayeva
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, 115478 Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, RUDN University, 117198 Moscow, Russia
| | - Maria A Khvorostina
- Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, 119333 Moscow, Russia
- Research Centre for Medical Genetics, 115478 Moscow, Russia
| | - Aleksandra V Atanova
- Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, 119333 Moscow, Russia
| | - Maria E Nikolaeva
- Institute of Physics, Technology, and Informational Systems, Moscow State Pedagogical University, 119991 Moscow, Russia
| | - Anastasia V Sochilina
- Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, 119333 Moscow, Russia
- Institute of Physics, Technology, and Informational Systems, Moscow State Pedagogical University, 119991 Moscow, Russia
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, 117997 Moscow, Russia
| | - Evgeny V Khaydukov
- Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, 119333 Moscow, Russia
- Institute of Physics, Technology, and Informational Systems, Moscow State Pedagogical University, 119991 Moscow, Russia
| | - Vladimir K Popov
- Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, 119333 Moscow, Russia
| |
Collapse
|
7
|
Hess KA, Spear NJ, Vogelsang SA, Macdonald JE, Buchanan LE. Determining the impact of gold nanoparticles on amyloid aggregation with 2D IR spectroscopy. J Chem Phys 2023; 158:091101. [PMID: 36889961 PMCID: PMC9981241 DOI: 10.1063/5.0136376] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/08/2023] [Indexed: 03/05/2023] Open
Abstract
As nanomaterials become more prevalent in both industry and medicine, it is crucial to fully understand their health risks. One area of concern is the interaction of nanoparticles with proteins, including their ability to modulate the uncontrolled aggregation of amyloid proteins associated with diseases, such as Alzheimer's disease and type II diabetes, and potentially extend the lifetime of cytotoxic soluble oligomers. This work demonstrates that two-dimensional infrared spectroscopy and 13C18O isotope labeling can be used to follow the aggregation of human islet amyloid polypeptide (hIAPP) in the presence of gold nanoparticles (AuNPs) with single-residue structural resolution. 60 nm AuNPs were found to inhibit hIAPP, tripling the aggregation time. Furthermore, calculating the actual transition dipole strength of the backbone amide I' mode reveals that hIAPP forms a more ordered aggregate structure in the presence of AuNPs. Ultimately, such studies can provide insight into how mechanisms of amyloid aggregation are altered in the presence of nanoparticles, furthering our understanding of protein-nanoparticle interactions.
Collapse
Affiliation(s)
- Kayla A. Hess
- Department of Chemistry, Vanderbilt University, 1234 Stevenson Center Lane, Nashville, Tennessee 37235, USA
| | - Nathan J. Spear
- Department of Chemistry, Vanderbilt University, 1234 Stevenson Center Lane, Nashville, Tennessee 37235, USA
| | - Sophia A. Vogelsang
- Department of Chemistry, Vanderbilt University, 1234 Stevenson Center Lane, Nashville, Tennessee 37235, USA
| | - Janet E. Macdonald
- Department of Chemistry, Vanderbilt University, 1234 Stevenson Center Lane, Nashville, Tennessee 37235, USA
| | - Lauren E. Buchanan
- Department of Chemistry, Vanderbilt University, 1234 Stevenson Center Lane, Nashville, Tennessee 37235, USA
| |
Collapse
|
8
|
Mizuta R, Inoue F, Sasaki Y, Sawada SI, Akiyoshi K. A Facile Method to Coat Nanoparticles with Lipid Bilayer Membrane: Hybrid Silica Nanoparticles Disguised as Biomembrane Vesicles by Particle Penetration of Concentrated Lipid Layers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206153. [PMID: 36634998 DOI: 10.1002/smll.202206153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Natural membrane vesicles, including extracellular vesicles and enveloped viruses, participate in various events in vivo. To study and manipulate these events, biomembrane-coated nanoparticles inspired by natural membrane vesicles are developed. Herein, an efficient method is presented to prepare organic-inorganic hybrid materials in high yields that can accommodate various lipid compositions and particle sizes. To demonstrate this method, silica nanoparticles are passed through concentrated lipid layers prepared using density gradient centrifugation, followed by purification, to obtain lipid membrane-coated nanoparticles. Various lipids, including neutral, anionic, and cationic lipids, are used to prepare concentrated lipid layers. Single-particle analysis by imaging flow cytometry determines that silica nanoparticles are uniformly coated with a single lipid bilayer. Moreover, cellular uptake of silica nanoparticles is enhanced when covered with a lipid membrane containing cationic lipids. Finally, cell-free protein expression is applied to embed a membrane protein, namely the Spike protein of severe acute respiratory syndrome coronavirus 2, into the coating of the nanoparticles, with the correct orientation. Therefore, this method can be used to develop organic-inorganic hybrid nanomaterials with an inorganic core and a virus-like coating, serving as carriers for targeted delivery of cargos such as proteins, DNA, and drugs.
Collapse
Affiliation(s)
- Ryosuke Mizuta
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, A3-317, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Fumihito Inoue
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, A3-317, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, A3-317, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Shin-Ichi Sawada
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, A3-317, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, A3-317, Nishikyo-ku, Kyoto, 615-8510, Japan
| |
Collapse
|
9
|
Cao Z, Liu R, Wang C, Lin S, Wang L, Pang Y. Fluorescence-Activating and Absorption-Shifting Nanoprobes for Anaerobic Tracking of Gut Microbiota Derived Vesicles. ACS NANO 2023; 17:2279-2293. [PMID: 36735721 DOI: 10.1021/acsnano.2c08780] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Outer membrane vesicles (OMVs) are crucial for bacterial intercellular communication and the crosstalk between the gut microbiota and its host. Methods capable of visualizing gut microbiota derived OMVs would be of great significance but have been rarely reported. Here, nanoprobes carrying a fluorescence-activating and absorption-shifting tag are prepared by combining genetic engineering and antibiotic-boosted vesicle formation and release. Benefiting from their natural structure and molecular oxygen-independent emission, the resulting nanovesicles can be applied as endogenous fluorescence probes to anaerobically track gut microbiota associated OMVs. These nanoprobes show flexibility in on-demand fluorescence turn-on/off and reversibly switchable emission bands for intelligent and dual-color imaging. With these special characteristics, the behaviors of microbiota OMVs to not only inhibit specific pathogenic strains through membrane fusion but also repair the intestinal barrier via entering intestinal epithelia and promoting the expressions of tight junctions are tracked and identified in the gut. Based on these discoveries, OMVs are disclosed to be able to remit inflammation in a murine model of colitis following transplantation to the intestine by oral delivery. This work provides an approach to visualize the dynamics of the gut microbiota and disclose potential targets for disease intervention.
Collapse
Affiliation(s)
- Zhenping Cao
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Rui Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chuhan Wang
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Sisi Lin
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lu Wang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yan Pang
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| |
Collapse
|
10
|
Dai X, Chen Y. Computational Biomaterials: Computational Simulations for Biomedicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2204798. [PMID: 35916024 DOI: 10.1002/adma.202204798] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/23/2022] [Indexed: 05/14/2023]
Abstract
With the flourishing development of material simulation methods (quantum chemistry methods, molecular dynamics, Monte Carlo, phase field, etc.), extensive adoption of computing technologies (high-throughput, artificial intelligence, machine learning, etc.), and the invention of high-performance computing equipment, computational simulation tools have sparked the fundamental mechanism-level explorations to predict the diverse physicochemical properties and biological effects of biomaterials and investigate their enormous application potential for disease prevention, diagnostics, and therapeutics. Herein, the term "computational biomaterials" is proposed and the computational methods currently used to explore the inherent properties of biomaterials, such as optical, magnetic, electronic, and acoustic properties, and the elucidation of corresponding biological behaviors/effects in the biomedical field are summarized/discussed. The theoretical calculation of the physiochemical properties/biological performance of biomaterials applied in disease diagnosis, drug delivery, disease therapeutics, and specific paradigms such as biomimetic biomaterials is discussed. Additionally, the biosafety evaluation applications of theoretical simulations of biomaterials are presented. Finally, the challenges and future prospects of such computational simulations for biomaterials development are clarified. It is anticipated that these simulations would offer various methodologies for facilitating the development and future clinical translations/utilization of versatile biomaterials.
Collapse
Affiliation(s)
- Xinyue Dai
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
11
|
Cetin A, Ilk Capar M. Functional-Group Effect of Ligand Molecules on the Aggregation of Gold Nanoparticles: A Molecular Dynamics Simulation Study. J Phys Chem B 2022; 126:5534-5543. [PMID: 35838544 PMCID: PMC9340766 DOI: 10.1021/acs.jpcb.2c01132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
In this paper, atomistic molecular dynamics simulations
are performed
for the systems consisting of functionalized gold nanoparticles (NPs)
in a toluene medium. Gold NPs are coated with ligand molecules that
have different terminal groups, that is, polar carboxyl (COOH), hydroxyl
(OH), amine (NH2), and nonpolar methyl (CH3).
These functional groups are selected to understand the relation between
the aggregation behavior of functionalized gold NPs in toluene and
the polarity of terminal groups of ligand molecules. The center-of-mass
distances between NP pairs, the radial distribution functions, the
mean square displacements, the radius of gyration, and the number
of hydrogen bonds (H-bond) between ligand molecules are computed.
Our simulation results indicate that functionalized gold NPs exhibit
different aggregation/dispersion behaviors depending upon the terminal
group of ligands.
Collapse
Affiliation(s)
- Ayse Cetin
- Department of Physics, Faculty of Science, Ege University, Bornova, Izmir 35100, Turkey
| | - Mine Ilk Capar
- Department of Physics, Faculty of Science, Ege University, Bornova, Izmir 35100, Turkey
| |
Collapse
|
12
|
Wang X, Liu Y, Hu Y, Gao H, Ge M, Ding J, Wang D. Hybrid Micelles Loaded with Chemotherapeutic drug-photothermal Agent Realizing Chemo-photothermal Synergistic Cancer Therapy. Eur J Pharm Sci 2022; 175:106231. [DOI: 10.1016/j.ejps.2022.106231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 11/03/2022]
|
13
|
Singh R, Sharma A, Saji J, Umapathi A, Kumar S, Daima HK. Smart nanomaterials for cancer diagnosis and treatment. NANO CONVERGENCE 2022; 9:21. [PMID: 35569081 PMCID: PMC9108129 DOI: 10.1186/s40580-022-00313-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/26/2022] [Indexed: 05/14/2023]
Abstract
Innovations in nanomedicine has guided the improved outcomes for cancer diagnosis and therapy. However, frequent use of nanomaterials remains challenging due to specific limitations like non-targeted distribution causing low signal-to-noise ratio for diagnostics, complex fabrication, reduced-biocompatibility, decreased photostability, and systemic toxicity of nanomaterials within the body. Thus, better nanomaterial-systems with controlled physicochemical and biological properties, form the need of the hour. In this context, smart nanomaterials serve as promising solution, as they can be activated under specific exogenous or endogenous stimuli such as pH, temperature, enzymes, or a particular biological molecule. The properties of smart nanomaterials make them ideal candidates for various applications like biosensors, controlled drug release, and treatment of various diseases. Recently, smart nanomaterial-based cancer theranostic approaches have been developed, and they are displaying better selectivity and sensitivity with reduced side-effects in comparison to conventional methods. In cancer therapy, the smart nanomaterials-system only activates in response to tumor microenvironment (TME) and remains in deactivated state in normal cells, which further reduces the side-effects and systemic toxicities. Thus, the present review aims to describe the stimulus-based classification of smart nanomaterials, tumor microenvironment-responsive behaviour, and their up-to-date applications in cancer theranostics. Besides, present review addresses the development of various smart nanomaterials and their advantages for diagnosing and treating cancer. Here, we also discuss about the drug targeting and sustained drug release from nanocarriers, and different types of nanomaterials which have been engineered for this intent. Additionally, the present challenges and prospects of nanomaterials in effective cancer diagnosis and therapeutics have been discussed.
Collapse
Affiliation(s)
- Ragini Singh
- College of Agronomy, Liaocheng University, Liaocheng, 252059, Shandong, China.
| | - Ayush Sharma
- Amity Center for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, Rajasthan, India
| | - Joel Saji
- Amity Center for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, Rajasthan, India
| | - Akhela Umapathi
- Amity Center for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, Rajasthan, India
| | - Santosh Kumar
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng, 252059, Shandong, China
| | - Hemant Kumar Daima
- Amity Center for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, Rajasthan, India.
| |
Collapse
|
14
|
Choi C, Chakraborty A, Coyle A, Shamiya Y, Paul A. Contact-Free Remote Manipulation of Hydrogel Properties Using Light-Triggerable Nanoparticles: A Materials Science Perspective for Biomedical Applications. Adv Healthc Mater 2022; 11:e2102088. [PMID: 35032156 DOI: 10.1002/adhm.202102088] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/26/2021] [Indexed: 12/12/2022]
Abstract
Considerable progress has been made in synthesizing "intelligent", biodegradable hydrogels that undergo rapid changes in physicochemical properties once exposed to external stimuli. These advantageous properties of stimulus-triggered materials make them highly appealing to diverse biomedical applications. Of late, research on the incorporation of light-triggered nanoparticles (NPs) into polymeric hydrogel networks has gained momentum due to their ability to remotely tune hydrogel properties using facile, contact-free approaches, such as adjustment of wavelength and intensity of light source. These multi-functional NPs, in combination with tissue-mimicking hydrogels, are increasingly being used for on-demand drug release, preparing diagnostic kits, and fabricating smart scaffolds. Here, the authors discuss the atomic behavior of different NPs in the presence of light, and critically review the mechanisms by which NPs convert light stimuli into heat energy. Then, they explain how these NPs impact the mechanical properties and rheological behavior of NPs-impregnated hydrogels. Understanding the rheological behavior of nanocomposite hydrogels using different sophisticated strategies, including computer-assisted machine learning, is critical for designing the next generation of drug delivery systems. Next, they highlight the salient strategies that have been used to apply light-induced nanocomposites for diverse biomedical applications and provide an outlook for the further improvement of these NPs-driven light-responsive hydrogels.
Collapse
Affiliation(s)
- Cho‐E Choi
- Department of Chemical and Biochemical Engineering The University of Western Ontario London ON N6A 5B9 Canada
| | - Aishik Chakraborty
- Department of Chemical and Biochemical Engineering The University of Western Ontario London ON N6A 5B9 Canada
| | - Ali Coyle
- School of Biomedical Engineering The University of Western Ontario London ON N6A 5B9 Canada
| | - Yasmeen Shamiya
- Department of Chemistry The University of Western Ontario London ON N6A 5B9 Canada
| | - Arghya Paul
- Department of Chemical and Biochemical Engineering School of Biomedical Engineering Department of Chemistry The Centre for Advanced Materials and Biomaterials Research The University of Western Ontario London ON N6A 5B9 Canada
| |
Collapse
|
15
|
Harish V, Tewari D, Gaur M, Yadav AB, Swaroop S, Bechelany M, Barhoum A. Review on Nanoparticles and Nanostructured Materials: Bioimaging, Biosensing, Drug Delivery, Tissue Engineering, Antimicrobial, and Agro-Food Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:457. [PMID: 35159802 PMCID: PMC8839643 DOI: 10.3390/nano12030457] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/19/2022] [Accepted: 01/23/2022] [Indexed: 01/27/2023]
Abstract
In the last few decades, the vast potential of nanomaterials for biomedical and healthcare applications has been extensively investigated. Several case studies demonstrated that nanomaterials can offer solutions to the current challenges of raw materials in the biomedical and healthcare fields. This review describes the different nanoparticles and nanostructured material synthesis approaches and presents some emerging biomedical, healthcare, and agro-food applications. This review focuses on various nanomaterial types (e.g., spherical, nanorods, nanotubes, nanosheets, nanofibers, core-shell, and mesoporous) that can be synthesized from different raw materials and their emerging applications in bioimaging, biosensing, drug delivery, tissue engineering, antimicrobial, and agro-foods. Depending on their morphology (e.g., size, aspect ratio, geometry, porosity), nanomaterials can be used as formulation modifiers, moisturizers, nanofillers, additives, membranes, and films. As toxicological assessment depends on sizes and morphologies, stringent regulation is needed from the testing of efficient nanomaterials dosages. The challenges and perspectives for an industrial breakthrough of nanomaterials are related to the optimization of production and processing conditions.
Collapse
Affiliation(s)
- Vancha Harish
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144401, India; (V.H.); (D.T.)
| | - Devesh Tewari
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144401, India; (V.H.); (D.T.)
| | - Manish Gaur
- Centre of Biotechnology, University of Allahabad, Prayagraj, Uttar Pradesh 211002, India;
| | - Awadh Bihari Yadav
- Centre of Biotechnology, University of Allahabad, Prayagraj, Uttar Pradesh 211002, India;
| | - Shiv Swaroop
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India;
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM UMR 5635, University Montpellier, ENSCM, CNRS, 34730 Montpellier, France
| | - Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Ain Helwan, Cairo 11795, Egypt
- National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, D09 Y074 Dublin, Ireland
| |
Collapse
|
16
|
Wang K, Lu J, Li J, Gao Y, Mao Y, Zhao Q, Wang S. Current trends in smart mesoporous silica-based nanovehicles for photoactivated cancer therapy. J Control Release 2021; 339:445-472. [PMID: 34637819 DOI: 10.1016/j.jconrel.2021.10.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022]
Abstract
Photoactivated therapeutic strategies (photothermal therapy and photodynamic therapy), due to the adjusted therapeutic area, time and light dosage, have prevailed for the fight against tumors. Currently, the monotherapy with limited treatment effect and undesired side effects is gradually replaced by multimodal and multifunctional nanosystems. Mesoporous silica nanoparticles (MSNs) with unique physicochemical advantages, such as huge specific surface area, controllable pore size and morphology, functionalized modification, satisfying biocompatibility and biodegradability, are considered as promising candidates for multimodal photoactivated cancer therapy. Excitingly, the innovative nanoplatforms based on the mesoporous silica nanoparticles provide more and more effective treatment strategies and display excellent antitumor potential. Given the rapid development of antitumor strategies based on MSNs, this review summarizes the current progress in MSNs-based photoactivated cancer therapy, mainly consists of (1) photothermal therapy-related theranostics; (2) photodynamic therapy-related theranostics; (3) multimodal synergistic therapy, such as chemo-photothermal-photodynamic therapy, phototherapy-immunotherapy and phototherapy-radio therapy. Based on the limited penetration of irradiation light in photoactivated therapy, the challenges faced by deep-seated tumor therapy are fully discussed, and future clinical translation of MSNs-based photoactivated cancer therapy are highlighted.
Collapse
Affiliation(s)
- Kaili Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Junya Lu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Jiali Li
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Yinlu Gao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Yuling Mao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| |
Collapse
|
17
|
Abbasi Kajani A, Haghjooy Javanmard S, Asadnia M, Razmjou A. Recent Advances in Nanomaterials Development for Nanomedicine and Cancer. ACS APPLIED BIO MATERIALS 2021; 4:5908-5925. [PMID: 35006909 DOI: 10.1021/acsabm.1c00591] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer is considered one of the leading causes of death, with a growing number of cases worldwide. However, the early diagnosis and efficient therapy of cancer have remained a critical challenge. The emergence of nanomedicine has opened up a promising window to address the drawbacks of cancer detection and treatment. A wide range of engineered nanomaterials and nanoplatforms with different shapes, sizes, and composition has been developed for various biomedical applications. Nanomaterials have been increasingly used in various applications in bioimaging, diagnosis, and therapy of cancers. Recently, numerous multifunctional and smart nanoparticles with the ability of simultaneous diagnosis and targeted cancer therapy have been reported. The multidisciplinary attempts led to the development of several exciting clinically approved nanotherapeutics. The nanobased materials and devices have also been used extensively to develop point-of-care and highly sensitive methods of cancer detection. In this review article, the most significant achievements and latest advances in the nanomaterials development for cancer nanomedicine are critically discussed. In addition, the future perspectives of this field are evaluated.
Collapse
Affiliation(s)
- Abolghasem Abbasi Kajani
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Mohsen Asadnia
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Amir Razmjou
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 73441-81746, Iran
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| |
Collapse
|
18
|
Matus MF, Häkkinen H. Atomically Precise Gold Nanoclusters: Towards an Optimal Biocompatible System from a Theoretical-Experimental Strategy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005499. [PMID: 33533179 DOI: 10.1002/smll.202005499] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/20/2020] [Indexed: 06/12/2023]
Abstract
Potential biomedical applications of gold nanoparticles have increasingly been reported with great promise for diagnosis and therapy of several diseases. However, for such a versatile nanomaterial, the advantages and potential health risks need to be addressed carefully, as the available information about their toxicity is limited and inconsistent. Atomically precise gold nanoclusters (AuNCs) have emerged to overcome this challenge due to their unique features, such as superior stability, excellent biocompatibility, and efficient renal clearance. Remarkably, the elucidation of their structural and physicochemical properties provided by theory-experiment investigations offers exciting opportunities for site-specific biofunctionalization of the nanoparticle surface, which remains a significant concern for most of the materials in the biomedical field. This concept highlights the advantages conferred by atomically precise AuNCs for biomedical applications and the powerful strategy combining computational and experimental studies towards finding an optimal biocompatible AuNCs-based nanosystem.
Collapse
Affiliation(s)
- María Francisca Matus
- Department of Physics, Nanoscience Center (NSC), University of Jyväskylä, Jyväskylä, FI-40014, Finland
| | - Hannu Häkkinen
- Departments of Physics and Chemistry, Nanoscience Center (NSC), University of Jyväskylä, Jyväskylä, FI-40014, Finland
| |
Collapse
|
19
|
Alphandéry E. Light-Interacting iron-based nanomaterials for localized cancer detection and treatment. Acta Biomater 2021; 124:50-71. [PMID: 33540060 DOI: 10.1016/j.actbio.2021.01.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/12/2022]
Abstract
To improve the prognosis of cancer patients, methods of local cancer detection and treatment could be implemented. For that, iron-based nanomaterials (IBN) are particularly well-suited due to their biocompatibility and the various ways in which they can specifically target a tumor, i.e. through passive, active or magnetic targeting. Furthermore, when it is needed, IBN can be associated with well-known fluorescent compounds, such as dyes, clinically approved ICG, fluorescent proteins, or quantum dots. They may also be excited and detected using well-established optical methods, relying on scattering or fluorescent mechanisms, depending on whether IBN are associated with a fluorescent compound or not. Systems combining IBN with optical methods are diverse, thus enabling tumor detection in various ways. In addition, these systems provide a wealth of information, which is inaccessible with more standard diagnostic tools, such as single tumor cell detection, in particular by combining IBN with near-field scanning optical microscopy, dark-field microscopy, confocal microscopy or super-resolution microscopy, or the highlighting of certain dynamic phenomena such as the diffusion of a fluorescent compound in an organism, e.g. using fluorescence lifetime imaging, fluorescence resonance energy transfer, fluorescence anisotropy, or fluorescence tomography. Furthermore, they can in some cases be complemented by a therapeutic approach to destroy tumors, e.g. when the fluorescent compound is a drug, or when a technique such as photo-thermal or photodynamic therapy is employed. This review brings forward the idea that iron-based nanomaterials may be associated with various optical techniques to form a commercially available toolbox, which can serve to locally detect or treat cancer with a better efficacy than more standard medical approaches. STATEMENT OF SIGNIFICANCE: New tools should be developed to improve cancer treatment outcome. For that, two closely-related aspects deserve to be considered, i.e. early tumor detection and local tumor treatment. Here, I present various types of iron-based nanomaterials, which can achieve this double objective when they interact with a beam of light under specific and accurately chosen conditions. Indeed, these materials are biocompatible and can be used/combined with most standard microscopic/optical methods. Thus, these systems enable on the one hand tumor cell detection with a high sensitivity, i.e. down to single tumor cell level, and on the other hand tumor destruction through various mechanisms in a controlled and localized manner by deciding whether or not to apply a beam of light and by having these nanomaterials specifically target tumor cells.
Collapse
|
20
|
Marcinkiewicz C, Lelkes PI, Sternberg M, Feuerstein GZ. Effects of Fluorescent Diamond Particles FDP-NV-800nm on Essential Biochemical Functions of Primary Human Umbilical Vein Cells and Human Hepatic Cell Line, HepG-2 in vitro (Part VI): Acute Biocompatibility Studies. Nanotechnol Sci Appl 2020; 13:103-118. [PMID: 33116443 PMCID: PMC7547810 DOI: 10.2147/nsa.s268107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/03/2020] [Indexed: 11/23/2022] Open
Abstract
Background Recently, we reported the safety and biocompatibility of fluorescent diamond particles, FDP-NV-Z-800nm (FDP-NV) injected intravenously into rats, where no morbidity and mortality were noted over a period of 3 months. The acute effects of FDP-NV-800nm particles on cultured human endothelial and hepatic cells remain unexplored. Purpose In this study, we aimed to explore select cellular and biochemical functions in cultured human umbilical endothelial cells (HUVEC) and a human hepatic cancer cell line (HepG-2) exposed to FDP-NV-800 in vitro at exposure levels within the pharmacokinetics (Cmax and the nadir) previously reported in vivo. Methods Diverse cellular and biochemical functions were monitored, which cumulatively can provide insights into some vital cellular functions. Cell proliferation and migration were assessed by quantitative microscopy. Mitochondrial metabolic functions were tested by the MTT assay, and cytosolic esterase activity was studied by the calcein AM assay. Chaperons (CHOP), BiP and apoptosis (caspase-3 activation) were monitored by using Western blot (WB). MAPK Erk1/2 signaling was assessed by the detection of the phosphorylated form of the protein (P-Erk 1/2) and its translocation into the cell nucleus. Results At all concentrations tested (0.001–0.1mg/mL), FDP-NV did not affect any of the biomarkers of cell integrity of HepG2 cells. In contrast, the proliferation of HUVEC was affected at the highest concentration tested (0.1mg/mL, Cmax). Exposure of HUVEC to (0.01 mg/mL) FDP-NV had a mild-moderate effect on cell proliferation as evident in the MTT assay and was absent when proliferation was assessed by direct cell counting or by using the calcein AM assays. In both cell types, exposure to the highest concentration (0.1 mg/mL) of FDP-NV did neither affect FBS-stimulated cell signaling (MAPK Erk1/2 phosphorylation) nor did it activate of Caspase 3. Conclusion Our data suggest that FDP-NV-800nm are largely biocompatible with HepG-2 cells proliferation within the pharmacokinetic data reported previously. In contrast, HUVEC proliferation at the highest exposure dose (0.1 mg/mL) responded adversely with respect to several biomarkers of cell integrity. However, since the Cmax levels are very short-living, the risk for endothelial injury is likely minimal for slow rate cell proliferation such as endothelial cells.
Collapse
Affiliation(s)
- Cezary Marcinkiewicz
- Debina Diagnostics Inc., Newtown Square, PA, USA.,College of Engineering, Temple University, Philadelphia, PA, USA
| | - Peter I Lelkes
- College of Engineering, Temple University, Philadelphia, PA, USA
| | | | | |
Collapse
|
21
|
Zong S, Tang H, Yang K, Wang H, Wang Z, Cui Y. SERS-fluorescence-superresolution triple-mode nanoprobe based on surface enhanced Raman scattering and surface enhanced fluorescence. J Mater Chem B 2020; 8:8459-8466. [PMID: 32812626 DOI: 10.1039/d0tb01211d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Multifunctional nanoprobes play important roles in cell imaging and sensing. Here, we present a novel optical nanoprobe based on surface enhanced Raman scattering (SERS) and surface enhanced fluorescence (SEF), which can realize the SERS-fluorescence and superresolution triple-mode imaging of cancer cells. Compared with other previously reported multifunctional nanoprobes, the proposed nanoprobe holds two exquisite properties. The first one is that, in addition to normal SERS and fluorescence imaging, the nanoprobe can also be used for single molecule localization microscopy (SMLM) imaging, which helps compensate for the diffraction limited spatial resolution of normal SERS and fluorescence imaging. The second one is that, other than simple fluorescence, SEF is used in the nanoprobe to produce a stronger signal for fluorescence imaging and, more importantly, better photo-switching for SMLM imaging. In the experiment, we optimized the structure of the nanoprobe to obtain the best SEF effect. With the optimal structure, the triple-mode imaging of a breast cancer cell line (SKBR3) is realized. Since such triple-mode imaging of cancer cells has never been achieved before, we believe that the presented nanoprobe holds great potential for cancer cell targeting or the investigation of cell-nanomaterial interactions.
Collapse
Affiliation(s)
- Shenfei Zong
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China.
| | - Hailong Tang
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China.
| | - Kuo Yang
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China.
| | - Hong Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhuyuan Wang
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China.
| | - Yiping Cui
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China.
| |
Collapse
|
22
|
Ahmad KS, Talat M, Jaffri SB, Shaheen N. Innovatory role of nanomaterials as bio-tools for treatment of cancer. REV INORG CHEM 2020. [DOI: 10.1515/revic-2020-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Conventional treatment modes like chemotherapy, thermal and radiations aimed at cancerous cells eradication are marked by destruction pointing the employment of nanomaterials as sustainable and auspicious materials for saving human lives. Cancer has been deemed as the second leading cause of death on a global scale. Nanomaterials employment in cancer treatment is based on the utilization of their inherent physicochemical characteristics in addition to their modification for using as nano-carriers and nano-vehicles eluted with anti-cancer drugs. Current work has reviewed the significant role of different types of nanomaterials in cancer therapeutics and diagnostics in a systematic way. Compilation of review has been done by analyzing voluminous investigations employing ERIC, MEDLINE, NHS Evidence and Web of Science databases. Search engines used were Google scholar, Jstore and PubMed. Current review is suggestive of the remarkable performance of nanomaterials making them candidates for cancer treatment for substitution of destructive treatment modes through investigation of their physicochemical characteristics, utilization outputs and long term impacts in patients.
Collapse
Affiliation(s)
- Khuram Shahzad Ahmad
- Department of Environmental Sciences , Fatima Jinnah Women University , The Mall, 46000 Rawalpindi , Pakistan
| | - Muntaha Talat
- Department of Environmental Sciences , Fatima Jinnah Women University , The Mall, 46000 Rawalpindi , Pakistan
| | - Shaan Bibi Jaffri
- Department of Environmental Sciences , Fatima Jinnah Women University , The Mall, 46000 Rawalpindi , Pakistan
| | | |
Collapse
|
23
|
Peng SL, Lai CH, Chu PY, Hsieh JT, Tseng YC, Chiu SC, Lin YH. Nanotheranostics With the Combination of Improved Targeting, Therapeutic Effects, and Molecular Imaging. Front Bioeng Biotechnol 2020; 8:570490. [PMID: 33042972 PMCID: PMC7523243 DOI: 10.3389/fbioe.2020.570490] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/27/2020] [Indexed: 12/27/2022] Open
Abstract
There is an increasing interest in the design of targeted carrier systems with combined therapeutic and diagnostic modalities. Therapeutic modalities targeting tumors with single ligand-based targeting nanocarriers are insufficient for proficient delivery and for targeting two different surface receptors that are overexpressed in cancer cells. Here, we evaluated an activated nanoparticle delivery system comprising fucoidan/hyaluronic acid to improve therapeutic efficacy. The system comprised polyethylene glycol-gelatin-encapsulated epigallocatechin gallate (EGCG), poly (D,L-lactide-co-glycolide; PLGA), and stable iron oxide nanoparticles (IOs). The latter enables targeting of prostate cancers in their molecular images. We demonstrate the transfer of nanoparticles and their entry into prostate cancer cells through ligand-specific recognition. This system may prove the benefits of drug delivery that enhances the inhibition of cell growth through apoptosis induction. Moreover, the improved targeting of nanotheranostics significantly suppressed orthotopic prostate tumor growth and more accurately targeted tumors compared with systemic combination therapy. In the presence of nanoparticles with iron oxides, the hypointensity of the prostate tumor was visualized on a T2-weignted magnetic resonance image. The diagnostic ability of this system was demonstrated by accumulating fluorescent nanoparticles in the prostate tumor from the in vivo imaging system, computed tomography. It is suggested that theranostic nanoparticles combined with a molecular imaging system can be a promising cancer therapy in the future.
Collapse
Affiliation(s)
- Shin-Lei Peng
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, Molecular Infectious Disease Research Center, Chang Gung University, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Pei-Yi Chu
- Faculty of Pharmacy, National Yang-Ming University, Taipei, Taiwan
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Yen-Chun Tseng
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Shao-Chieh Chiu
- Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yu-Hsin Lin
- Faculty of Pharmacy, National Yang-Ming University, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Institute of Biopharmaceutical Science, Department and Institute of Pharmacology, Center for Advanced Pharmaceutics and Drug Delivery Research, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
24
|
Jiang S, Huang K, Qu J, Lin J, Huang P. Cancer nanotheranostics in the second near‐infrared window. VIEW 2020. [DOI: 10.1002/viw.20200075] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Shanshan Jiang
- Marshall Laboratory of Biomedical Engineering International Cancer Center Laboratory of Evolutionary Theranostics (LET) School of Biomedical Engineering Shenzhen University Health Science Center Shenzhen China
| | - Kai Huang
- Marshall Laboratory of Biomedical Engineering International Cancer Center Laboratory of Evolutionary Theranostics (LET) School of Biomedical Engineering Shenzhen University Health Science Center Shenzhen China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Optoelectronic Engineering Shenzhen University Shenzhen China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Optoelectronic Engineering Shenzhen University Shenzhen China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering International Cancer Center Laboratory of Evolutionary Theranostics (LET) School of Biomedical Engineering Shenzhen University Health Science Center Shenzhen China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering International Cancer Center Laboratory of Evolutionary Theranostics (LET) School of Biomedical Engineering Shenzhen University Health Science Center Shenzhen China
| |
Collapse
|