1
|
Lopez SG, Estroff LA, Bonassar LJ. siRNA Treatment Enhances Collagen Fiber Formation in Tissue-Engineered Meniscus via Transient Inhibition of Aggrecan Production. Bioengineering (Basel) 2024; 11:1308. [PMID: 39768126 PMCID: PMC11727199 DOI: 10.3390/bioengineering11121308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/02/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
The complex collagen network of the native meniscus and the gradient of the density and alignment of this network through the meniscal enthesis is essential for the proper mechanical function of these tissues. This architecture is difficult to recapitulate in tissue-engineered replacement strategies. Prenatally, the organization of the collagen fiber network is established and aggrecan content is minimal. In vitro, fibrochondrocytes (FCCs) produce proteoglycans and associated glycosaminoglycan (GAG) chains early in culture, which can inhibit collagen fiber formation during the maturation of tissue-engineered menisci. Thus, it would be beneficial to both specifically and temporarily block deposition of proteoglycans early in culture. In this study, we transiently inhibited aggrecan production by meniscal fibrochondrocytes using siRNA in collagen gel-based tissue-engineered constructs. We evaluated the effect of siRNA treatment on the formation of collagen fibrils and bulk and microscale tensile properties. Specific inhibition of aggrecan production by fibrochondrocytes via siRNA was successful both in 2D monolayer cell culture and 3D tissue culture. This inhibition during early maturation of these in vitro constructs increased collagen fibril diameter by more than 2-fold. This increase in fibril diameter allowed these tissues to distribute strains more effectively at the local level, particularly at the interface of the bone and soft tissue. These data show that siRNA can be used to modulate the ECM to improve collagen fiber formation and mechanical properties in tissue-engineered constructs, and that a transient decrease in aggrecan promotes the formation of a more robust fiber network.
Collapse
Affiliation(s)
- Serafina G. Lopez
- Meinig of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA;
| | - Lara A. Estroff
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA;
- Kavli Institute for Nanoscale Science at Cornell, Cornell University, Ithaca, NY 14853, USA
| | - Lawrence J. Bonassar
- Meinig of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA;
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
2
|
Park CH, Park JH, Suh YJ. Perspective of 3D culture in medicine: transforming disease research and therapeutic applications. Front Bioeng Biotechnol 2024; 12:1491669. [PMID: 39749112 PMCID: PMC11693738 DOI: 10.3389/fbioe.2024.1491669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/06/2024] [Indexed: 01/04/2025] Open
Abstract
3D cell culture is gaining momentum in medicine due to its ability to mimic real tissues (in vivo) and provide more accurate biological data compared to traditional methods. This review explores the current state of 3D cell culture in medicine and discusses future directions, including the need for standardization and simpler protocols to facilitate wider use in research. Purpose 3D cell culture develops life sciences by mimicking the natural cellular environment. Cells in 3D cultures grow in three dimensions and interact with a matrix, fostering realistic cell behavior and interactions. This enhanced model offers significant advantages for diverse research areas. Methods By mimicking the cellular organization and functionalities found in human tissues, 3D cultures provide superior platforms for studying complex diseases like cancer and neurodegenerative disorders. This enables researchers to gain deeper insights into disease progression and identify promising therapeutic targets with greater accuracy. 3D cultures also play a crucial role in drug discovery by allowing researchers to effectively assess potential drugs' safety and efficacy. Results 3D cell culture's impact goes beyond disease research. It holds promise for tissue engineering. By replicating the natural tissue environment and providing a scaffold for cell growth, 3D cultures pave the way for regenerating damaged tissues, offering hope for treating burns, organ failure, and musculoskeletal injuries. Additionally, 3D cultures contribute to personalized medicine. Researchers can use patient-derived cells to create personalized disease models and identify the most effective treatment for each individual. Conclusion With ongoing advancements in cell imaging techniques, the development of novel biocompatible scaffolds and bioreactor systems, and a deeper understanding of cellular behavior within 3D environments, 3D cell culture technology stands poised to revolutionize various aspects of healthcare and scientific discovery.
Collapse
Affiliation(s)
- Chan Hum Park
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon, Republic of Korea
- Departments of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, School of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jung Ho Park
- Department of Breast and Endocrine Surgery, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | - Yong Joon Suh
- Department of Breast and Endocrine Surgery, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| |
Collapse
|
3
|
Runser S, Vetter R, Iber D. SimuCell3D: three-dimensional simulation of tissue mechanics with cell polarization. NATURE COMPUTATIONAL SCIENCE 2024; 4:299-309. [PMID: 38594592 PMCID: PMC11052725 DOI: 10.1038/s43588-024-00620-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 03/08/2024] [Indexed: 04/11/2024]
Abstract
The three-dimensional (3D) organization of cells determines tissue function and integrity, and changes markedly in development and disease. Cell-based simulations have long been used to define the underlying mechanical principles. However, high computational costs have so far limited simulations to either simplified cell geometries or small tissue patches. Here, we present SimuCell3D, an efficient open-source program to simulate large tissues in three dimensions with subcellular resolution, growth, proliferation, extracellular matrix, fluid cavities, nuclei and non-uniform mechanical properties, as found in polarized epithelia. Spheroids, vesicles, sheets, tubes and other tissue geometries can readily be imported from microscopy images and simulated to infer biomechanical parameters. Doing so, we show that 3D cell shapes in layered and pseudostratified epithelia are largely governed by a competition between surface tension and intercellular adhesion. SimuCell3D enables the large-scale in silico study of 3D tissue organization in development and disease at a great level of detail.
Collapse
Affiliation(s)
- Steve Runser
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Basel, Switzerland
- Swiss Institute of Bioinformatics (SIB), Basel, Switzerland
| | - Roman Vetter
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Basel, Switzerland
- Swiss Institute of Bioinformatics (SIB), Basel, Switzerland
| | - Dagmar Iber
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Basel, Switzerland.
- Swiss Institute of Bioinformatics (SIB), Basel, Switzerland.
| |
Collapse
|
4
|
Pajic-Lijakovic I, Milivojevic M. Cell jamming-to-unjamming transitions and vice versa in development: Physical aspects. Biosystems 2023; 234:105045. [PMID: 37813238 DOI: 10.1016/j.biosystems.2023.105045] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/11/2023]
Abstract
Collective cell migration is essential for a wide range of biological processes such as: morphogenesis, wound healing, and cancer spreading. However, it is well known that migrating epithelial collectives frequently undergo jamming, stay trapped some period of time, and then start migration again. Consequently, only a part of epithelial cells actively contributes to the tissue development. In contrast to epithelial cells, migrating mesenchymal collectives successfully avoid the jamming. It has been confirmed that the epithelial unjamming cannot be treated as the epithelial-to-mesenchymal transition. Some other mechanism is responsible for the epithelial jamming/unjamming. Despite extensive research devoted to study the cell jamming/unjamming, we still do not understand the origin of this phenomenon. The origin is connected to physical factors such as: the cell compressive residual stress accumulation and surface characteristics of migrating (unjamming) and resting (jamming) epithelial clusters which depend primarily on the strength of cell-cell adhesion contacts and cell contractility. The main goal of this theoretical consideration is to clarify these cause-consequence relations.
Collapse
Affiliation(s)
- Ivana Pajic-Lijakovic
- Faculty of Technology and Metallurgy, Belgrade University, Karnegijeva 4, Belgrade, Serbia.
| | - Milan Milivojevic
- Faculty of Technology and Metallurgy, Belgrade University, Karnegijeva 4, Belgrade, Serbia
| |
Collapse
|
5
|
Yousafzai MS, Hammer JA. Using Biosensors to Study Organoids, Spheroids and Organs-on-a-Chip: A Mechanobiology Perspective. BIOSENSORS 2023; 13:905. [PMID: 37887098 PMCID: PMC10605946 DOI: 10.3390/bios13100905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 10/28/2023]
Abstract
The increasing popularity of 3D cell culture models is being driven by the demand for more in vivo-like conditions with which to study the biochemistry and biomechanics of numerous biological processes in health and disease. Spheroids and organoids are 3D culture platforms that self-assemble and regenerate from stem cells, tissue progenitor cells or cell lines, and that show great potential for studying tissue development and regeneration. Organ-on-a-chip approaches can be used to achieve spatiotemporal control over the biochemical and biomechanical signals that promote tissue growth and differentiation. These 3D model systems can be engineered to serve as disease models and used for drug screens. While culture methods have been developed to support these 3D structures, challenges remain to completely recapitulate the cell-cell and cell-matrix biomechanical interactions occurring in vivo. Understanding how forces influence the functions of cells in these 3D systems will require precise tools to measure such forces, as well as a better understanding of the mechanobiology of cell-cell and cell-matrix interactions. Biosensors will prove powerful for measuring forces in both of these contexts, thereby leading to a better understanding of how mechanical forces influence biological systems at the cellular and tissue levels. Here, we discussed how biosensors and mechanobiological research can be coupled to develop accurate, physiologically relevant 3D tissue models to study tissue development, function, malfunction in disease, and avenues for disease intervention.
Collapse
Affiliation(s)
- Muhammad Sulaiman Yousafzai
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - John A. Hammer
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Merino-Casallo F, Gomez-Benito MJ, Hervas-Raluy S, Garcia-Aznar JM. Unravelling cell migration: defining movement from the cell surface. Cell Adh Migr 2022; 16:25-64. [PMID: 35499121 PMCID: PMC9067518 DOI: 10.1080/19336918.2022.2055520] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/10/2022] [Indexed: 12/13/2022] Open
Abstract
Cell motility is essential for life and development. Unfortunately, cell migration is also linked to several pathological processes, such as cancer metastasis. Cells' ability to migrate relies on many actors. Cells change their migratory strategy based on their phenotype and the properties of the surrounding microenvironment. Cell migration is, therefore, an extremely complex phenomenon. Researchers have investigated cell motility for more than a century. Recent discoveries have uncovered some of the mysteries associated with the mechanisms involved in cell migration, such as intracellular signaling and cell mechanics. These findings involve different players, including transmembrane receptors, adhesive complexes, cytoskeletal components , the nucleus, and the extracellular matrix. This review aims to give a global overview of our current understanding of cell migration.
Collapse
Affiliation(s)
- Francisco Merino-Casallo
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza, Spain
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Maria Jose Gomez-Benito
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza, Spain
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Silvia Hervas-Raluy
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza, Spain
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Jose Manuel Garcia-Aznar
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza, Spain
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
7
|
Pajic-Lijakovic I, Milivojevic M. Marangoni effect and cell spreading. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2022; 51:419-429. [PMID: 35930028 DOI: 10.1007/s00249-022-01612-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Cells are very sensitive to the shear stress (SS). However, undesirable SS is generated during physiological process such as collective cell migration (CCM) and influences the biological processes such as morphogenesis, wound healing and cancer invasion. Despite extensive research devoted to study the SS generation caused by CCM, we still do not fully understand the main cause of SS appearance. An attempt is made here to offer some answers to these questions by considering the rearrangement of cell monolayers. The SS generation represents a consequence of natural and forced convection. While forced convection is dependent on cell speed, the natural convection is induced by the gradient of tissue surface tension. The phenomenon is known as the Marangoni effect. The gradient of tissue surface tension induces directed cell spreading from the regions of lower tissue surface tension to the regions of higher tissue surface tension and leads to the cell sorting. This directional cell migration is described by the Marangoni flux. The phenomenon has been recognized during the rearrangement of (1) epithelial cell monolayers and (2) mixed cell monolayers made by epithelial and mesenchymal cells. The consequence of the Marangoni effect is an intensive spreading of cancer cells through an epithelium. In this work, a review of existing literature about SS generation caused by CCM is given along with the assortment of published experimental findings, to invite experimentalists to test given theoretical considerations in multicellular systems.
Collapse
Affiliation(s)
- Ivana Pajic-Lijakovic
- Faculty of Technology and Metallurgy, Department of Chemical Engineering, University of Belgrade, Belgrade, Serbia.
| | - Milan Milivojevic
- Faculty of Technology and Metallurgy, Department of Chemical Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
8
|
Wilks BT, Evans EB, Howes A, Hopkins CM, Nakhla MN, Williams G, Morgan JR. Quantifying Cell-Derived Changes in Collagen Synthesis, Alignment, and Mechanics in a 3D Connective Tissue Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103939. [PMID: 35102708 PMCID: PMC8981917 DOI: 10.1002/advs.202103939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Dysregulation of extracellular matrix (ECM) synthesis, organization, and mechanics are hallmark features of diseases like fibrosis and cancer. However, most in vitro models fail to recapitulate the three-dimensional (3D) multi-scale hierarchical architecture of collagen-rich tissues and as a result, are unable to mirror native or disease phenotypes. Herein, using primary human fibroblasts seeded into custom fabricated 3D non-adhesive agarose molds, a novel strategy is proposed to direct the morphogenesis of engineered 3D ring-shaped tissue constructs with tensile and histological properties that recapitulate key features of fibrous connective tissue. To characterize the shift from monodispersed cells to a highly-aligned, collagen-rich matrix, a multi-modal approach integrating histology, multiphoton second-harmonic generation, and electron microscopy is employed. Structural changes in collagen synthesis and alignment are then mapped to functional differences in tissue mechanics and total collagen content. Due to the absence of an exogenously added scaffolding material, this model enables the direct quantification of cell-derived changes in 3D matrix synthesis, alignment, and mechanics in response to the addition or removal of relevant biomolecular perturbations. To illustrate this, the effects of nutrient composition, fetal bovine serum, rho-kinase inhibitor, and pro- and anti-fibrotic compounds on ECM synthesis, 3D collagen architecture, and mechanophenotype are quantified.
Collapse
Affiliation(s)
- Benjamin T. Wilks
- Center for Biomedical EngineeringBrown UniversityProvidenceRI02129USA
- Center for Alternatives to Animals in TestingBrown UniversityProvidenceRI02129USA
- Present address:
Center for Engineering in Medicine & SurgeryHarvard Medical School & Massachusetts General HospitalBostonMA02114USA
| | | | - Andrew Howes
- Department of Molecular BiologyCell Biology & BiochemistryBrown UniversityProvidenceRI02129USA
| | - Caitlin M. Hopkins
- Center for Alternatives to Animals in TestingBrown UniversityProvidenceRI02129USA
- Department of Pathology & Laboratory MedicineBrown UniversityProvidenceRI02129USA
| | - Morcos N. Nakhla
- Department of Pathology & Laboratory MedicineBrown UniversityProvidenceRI02129USA
| | - Geoffrey Williams
- Department of Molecular BiologyCell Biology & BiochemistryBrown UniversityProvidenceRI02129USA
| | - Jeffrey R. Morgan
- Center for Biomedical EngineeringBrown UniversityProvidenceRI02129USA
- Center for Alternatives to Animals in TestingBrown UniversityProvidenceRI02129USA
- Department of Pathology & Laboratory MedicineBrown UniversityProvidenceRI02129USA
| |
Collapse
|
9
|
Ding X, Li M, Cheng B, Wei Z, Dong Y, Xu F. Microsphere sensors for characterizing stress fields within three-dimensional extracellular matrix. Acta Biomater 2022; 141:1-13. [PMID: 34979325 DOI: 10.1016/j.actbio.2021.12.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/11/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022]
Abstract
Stress in the three-dimensional extracellular matrix is one of the key cues in regulating multiscale biological processes. Thus far, noticeable progress in methods and techniques (e.g., micropipette aspiration, AFM, and molecule probes) has been made to quantify stress in cell microenvironment at different length scales. Among them, the microsphere sensor-based method (MSS-based method) has emerged as an advantageous approach over conventional techniques in quantifying stress in situ and in vivo at cellular and supra-cellular scales. This method is implemented by seven sequential steps, including fabrication, modification, characterization, cell adhesion, imaging, displacement field extraction and stress calculation. Precise control of each step and inter-tunning between steps can provide quantitative characterization of stress field. However, detailed procedural information associated with each step and process has been scattered. This review aims to provide a comprehensive overview of MSS-based method, systematically summarizing the principles and research progresses. Firstly, the basic principles are introduced, and the specific experiment and calculation processes of MSS-based method are presented in detail. Then, recent advances and applications of this method are summarized. Finally, perspectives of the limitations and development trends of MSS-based method are discussed. This specific and comprehensive review would provide a guideline for the widespread application of MSS-based method as an advantageous method for in situ and in vivo stress characterization at cellular and supra-cellular scale within three-dimensional extracellular matrix. STATEMENT OF SIGNIFICANCE: In this review, a method based on a microsphere sensor (MSS-based method) as an advantageous approach over conventional techniques in quantifying stress in situ and in vivo at cellular and supra-cellular scales is introduced and discussed. This technique is implemented by seven sequential steps, including fabrication, modification, characterization, cell junction, imaging, displacement field extraction, and stress calculation. Precise control of each step and inter-tunning between steps can provide quantitative stress field. However, detailed procedural information associated with each step has been scattered. Thus, a comprehensive review collating recent advances and perspective discussions is a necessity to introduce a better option for quantifying the stress field in biological processes at the cellular and supra-cellular scales.
Collapse
Affiliation(s)
- Xin Ding
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Moxiao Li
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China
| | - Bo Cheng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Zhao Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yuqing Dong
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
10
|
Fabiano E, Zhang J, Reinhart-King C. Tissue density in the progression of breast cancer: Bedside to bench and back again. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022; 22. [DOI: 10.1016/j.cobme.2022.100383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Valencia L, López-Llorente V, Lasheras JC, Jorcano JL, Rodríguez-Rodríguez J. Interaction of a Migrating Cell Monolayer with a Flexible Fiber. Biophys J 2021; 120:539-546. [PMID: 33359462 PMCID: PMC7895989 DOI: 10.1016/j.bpj.2020.12.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/04/2020] [Accepted: 12/08/2020] [Indexed: 12/21/2022] Open
Abstract
Mechanical forces influence the development and behavior of biological tissues. In many situations, these forces are exerted or resisted by elastic compliant structures such as the own-tissue cellular matrix or other surrounding tissues. This kind of tissue-elastic body interactions are also at the core of many state-of-the-art in situ force measurement techniques employed in biophysics. This creates the need to model tissue interaction with the surrounding elastic bodies that exert these forces, raising the question of which are the minimal ingredients needed to describe such interactions. We conduct experiments in which migrating cell monolayers push on carbon fibers as a model problem. Although the migrating tissue is able to bend the fiber for some time, it eventually recoils before coming to a stop. This stop occurs when cells have performed a fixed mechanical work on the fiber, regardless of its stiffness. Based on these observations, we develop a minimal active-fluid model that reproduces the experiments and predicts quantitatively relevant features of the system. This minimal model points out the essential ingredients needed to describe tissue-elastic solid interactions: an effective inertia and viscous stresses.
Collapse
Affiliation(s)
- Leticia Valencia
- Department of Biomedical and Aerospace Engineering, Carlos III University of Madrid, Madrid, Spain; Academic Unit for Disruptive Technologies in Regenerative Medicine, Carlos III University of Madrid, Madrid, Spain
| | | | - Juan C Lasheras
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California; Department of Bioengineering, University of California San Diego, La Jolla, California
| | - José L Jorcano
- Department of Biomedical and Aerospace Engineering, Carlos III University of Madrid, Madrid, Spain; Academic Unit for Disruptive Technologies in Regenerative Medicine, Carlos III University of Madrid, Madrid, Spain; Division of Epithelial Biomedicine, CIEMAT-CIBERER, Madrid, Spain
| | - Javier Rodríguez-Rodríguez
- Academic Unit for Disruptive Technologies in Regenerative Medicine, Carlos III University of Madrid, Madrid, Spain; Department of Thermal and Fluid Engineering, Carlos III University of Madrid, Madrid, Spain.
| |
Collapse
|
12
|
Pajic-Lijakovic I, Milivojevic M. Multiscale nature of cell rearrangement caused by collective cell migration. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:1-14. [PMID: 33495939 DOI: 10.1007/s00249-021-01496-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/16/2020] [Accepted: 01/07/2021] [Indexed: 11/28/2022]
Abstract
Collective cell migration (CCM), a highly coordinated and fine-tuned migratory mode, is involved in a plethora of biological processes, such as embryogenesis, tissue repair and cancer invasion. Although a good comprehension of how cells collectively migrate by following molecular rules has been generated, the impact of cellular rearrangements on collective migration remains less understood. Thus, considering CCM from a multi-scale quantitative approach could result in a powerful tool to address the contribution of cellular rearrangements in CCM and help to understand this important but still controversial topic. In this work, a review of existing literature in CCM modeling at different scales is given along with assortment of published experimental findings, to invite experimentalists to test given theoretical considerations in multicellular systems. In addition, three different time and space scales (free or weakly connected cells, cluster of cells and collision fronts of different cells clusters) are considered and the multi-scale nature of those processes was discussed with special emphasis of jamming and unjamming states.
Collapse
Affiliation(s)
- Ivana Pajic-Lijakovic
- Faculty of Technology and Metallurgy, Belgrade University, Karnegijeva 4, Belgrade, Serbia.
| | - Milan Milivojevic
- Faculty of Technology and Metallurgy, Belgrade University, Karnegijeva 4, Belgrade, Serbia
| |
Collapse
|
13
|
Haider T, Sandha KK, Soni V, Gupta PN. Recent advances in tumor microenvironment associated therapeutic strategies and evaluation models. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111229. [DOI: 10.1016/j.msec.2020.111229] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/08/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023]
|
14
|
Pajic-Lijakovic I, Milivojevic M. Collective cell migration and residual stress accumulation: Rheological consideration. J Biomech 2020; 108:109898. [PMID: 32636009 DOI: 10.1016/j.jbiomech.2020.109898] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/22/2020] [Accepted: 06/06/2020] [Indexed: 10/24/2022]
Abstract
Stress generation during collective cell migration represents one of the key factors which influence the configuration of migrating cells, viscoelasticity of multicellular systems and their inter-relation. Local generation of stress (normal and shear) is significant even in 2D. Normal stress is primarily accumulated within a core region of migrating cell clusters during their movement through the dense environment and during the collisions of migrating cell clusters caused by uncorrelated motility. Shear stress can be significant within perturbed boundary layers around migrating clusters. Cells are more sensitive to the action of shear stress compared with normal stress. Shear stress of a few Pa significantly influences cell state. Prior studies have shown that collectively migrating cells move in such a way to minimize this stress, but it has not yet been determined how cells effectively minimize it. Deeper insight into possible cell mechanisms for minimizing undesirable shear stress would be of great importance because it may help to direct morphogenesis, accelerate wound healing or prevent cancer invasion. In the proposed model three primary mechanisms in which cells may reduce shear are given: decreasing speed, tissue thickening, and/or reducing slip effects. Suggestions obtained from the proposed model indicate a need for further experimental studies that will reveal whether the heterogeneity in the cell-cell adhesion types correlates well with the stiffness inhomogeneity, or changes in the adhesion clustering, cytoskeletal linkage or some other modification to the adhesion complex (adherens junctions or tight junctions) are occurring to influence overall adhesive strength.
Collapse
Affiliation(s)
- Ivana Pajic-Lijakovic
- Faculty of Technology and Metallurgy, Belgrade University, Karnegijeva 4, Belgrade, Serbia.
| | - Milan Milivojevic
- Faculty of Technology and Metallurgy, Belgrade University, Karnegijeva 4, Belgrade, Serbia
| |
Collapse
|
15
|
Zanotelli MR, Chada NC, Johnson CA, Reinhart-King CA. The Physical Microenvironment of Tumors: Characterization and Clinical Impact. ACTA ACUST UNITED AC 2020. [DOI: 10.1142/s1793048020300029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The tumor microenvironment plays a critical role in tumorigenesis and metastasis. As tightly controlled extracellular matrix homeostasis is lost during tumor progression, a dysregulated extracellular matrix can significantly alter cellular phenotype and drive malignancy. Altered physical properties of the tumor microenvironment alter cancer cell behavior, limit delivery and efficacy of therapies, and correlate with tumorigenesis and patient prognosis. The physical features of the extracellular matrix during tumor progression have been characterized; however, a wide range of methods have been used between studies and cancer types resulting in a large range of reported values. Here, we discuss the significant mechanical and structural properties of the tumor microenvironment, summarizing their reported values and clinical impact across cancer type and grade. We attempt to integrate the values in the literature to identify sources of reported differences and commonalities to better understand how aberrant extracellular matrix dynamics contribute to cancer progression. An intimate understanding of altered matrix properties during malignant transformation will be crucial in effectively detecting, monitoring, and treating cancer.
Collapse
Affiliation(s)
- Matthew R. Zanotelli
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Weill Hall, Ithaca, NY 14583, USA
- Department of Biomedical Engineering, Vanderbilt University, 2414 Highland Avenue, Nashville, TN 37235, USA
| | - Neil C. Chada
- Department of Biomedical Engineering, Vanderbilt University, 2414 Highland Avenue, Nashville, TN 37235, USA
| | - C. Andrew Johnson
- Department of Biomedical Engineering, Vanderbilt University, 2414 Highland Avenue, Nashville, TN 37235, USA
| | - Cynthia A. Reinhart-King
- Department of Biomedical Engineering, Vanderbilt University, 2414 Highland Avenue, Nashville, TN 37235, USA
| |
Collapse
|
16
|
Viscoelasticity of multicellular systems caused by collective cell migration: dynamics at the biointerface. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2020; 49:253-265. [DOI: 10.1007/s00249-020-01431-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 04/03/2020] [Accepted: 04/20/2020] [Indexed: 01/28/2023]
|