1
|
Aydın B, Bozoğlu S, Karatepe N, Güner FS. Synthesis of Bovine Serum Albumin-Coated Magnetic Single-Walled Carbon Nanotubes as a Delivery System for Mitoxantrone. ACS OMEGA 2025; 10:102-113. [PMID: 39829559 PMCID: PMC11740624 DOI: 10.1021/acsomega.3c09608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 07/09/2024] [Accepted: 07/31/2024] [Indexed: 01/22/2025]
Abstract
In this study, a bovine serum albumin (BSA)-coated magnetic single-walled carbon nanotube (mCNT) was synthesized using covalent functionalization. Mitoxantrone (MTO) was chosen as a model drug, and loading/release profiles of mCNTs were evaluated. To synthesize BSA-coated mCNT, 1-ethyl-3-(3-(dimethylamino)propyl) carbodiimide and N-hydroxysuccinimide were used as cross-linking agents. The success of the functionalization process was demonstrated through various analysis techniques such as Fourier transform infrared spectroscopy, Raman spectroscopy, thermogravimetric analysis, X-ray photoelectron spectroscopy, vibrating sample magnetometer, and scanning electron microscopy. The saturation magnetization of mCNT-BSA was 15.6 emu/g, indicating its potential for magnetically targeted drug delivery systems. Finally, MTO was physically loaded on the BSA-coated mCNT (mCNT-BSA) and the results were compared to those of mCNT. mCNT-BSA showed less drug loading capacity but more release response than mCNT. Considering drug release and cytotoxicity test results, MTO-loaded mCNT-BSA nanoparticles have great potential for cancer treatment.
Collapse
Affiliation(s)
- Buğçe Aydın
- Department
of Chemical Engineering, Istanbul Technical
University, Istanbul 34469, Türkiye
- Department
of Chemical Engineering, Ondokuz Mayıs
University, Samsun 55139, Türkiye
| | - Serdar Bozoğlu
- Energy
Institute, Renewable Energy Division, Istanbul
Technical University, Istanbul 34469, Türkiye
| | - Nilgün Karatepe
- Energy
Institute, Renewable Energy Division, Istanbul
Technical University, Istanbul 34469, Türkiye
| | - F. Seniha Güner
- Department
of Chemical Engineering, Istanbul Technical
University, Istanbul 34469, Türkiye
- Sabancı
University Nanotechnology Research and Application Center (SUNUM), Istanbul 34956, Türkiye
| |
Collapse
|
2
|
Saleh M, Gul A, Nasir A, Moses TO, Nural Y, Yabalak E. Comprehensive review of Carbon-based nanostructures: Properties, synthesis, characterization, and cross-disciplinary applications. J IND ENG CHEM 2024. [DOI: 10.1016/j.jiec.2024.11.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Güner Yılmaz Ö, Yılmaz A, Bozoglu S, Karatepe N, Batirel S, Sahin A, Güner FS. Single-Walled (Magnetic) Carbon Nanotubes in a Pectin Matrix in the Design of an Allantoin Delivery System. ACS OMEGA 2024; 9:10069-10079. [PMID: 38463283 PMCID: PMC10918663 DOI: 10.1021/acsomega.3c03619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/08/2023] [Accepted: 11/27/2023] [Indexed: 03/12/2024]
Abstract
Single-walled carbon nanotubes (SWCNTs) outperform other materials due to their high conductivity, large specific surface area, and chemical resistance. They have numerous biomedical applications, including the magnetization of the SWCNT (mSWCNT). The drug loading and release properties of see-through pectin hydrogels doped with SWCNTs and mSWCNTs were evaluated in this study. The active molecule in the hydrogel structure is allantoin, and calcium chloride serves as a cross-linker. In addition to mixing, absorption, and swelling techniques, drug loading into carbon nanotubes was also been studied. To characterize the films, differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), Fourier transform infrared (FTIR) spectroscopy, surface contact angle measurements, and opacity analysis were carried out. Apart from these, a rheological analysis was also carried out to examine the flow properties of the hydrogels. The study was also expanded to include N-(9-fluorenyl methoxycarbonyl)glycine-coated SWCNTs and mSWCNTs as additives to evaluate the efficiency of the drug-loading approach. Although the CNT additive was used at a 1:1000 weight ratio, it had a significant impact on the hydrogel properties. This effect, which was first observed in the thermal properties, was confirmed in rheological analyses by increasing solution viscosity. Additionally, rheological analysis and drug release profiles show that the type of additive causes a change in the matrix structure. According to TGA findings, even though SWCNTs and mSWCNTs were not coated more than 5%, the coating had a significant effect on drug release control. In addition to all findings, cell viability tests revealed that hydrogels with various additives could be used for visual wound monitoring, hyperthermia treatment, and allantoin release in wound treatment applications.
Collapse
Affiliation(s)
- Ö.
Zeynep Güner Yılmaz
- Department
of Chemical Engineering, Istanbul Technical
University, Maslak, Istanbul 34469, Turkey
| | - Anıl Yılmaz
- Department
of Chemical Engineering, Istanbul Technical
University, Maslak, Istanbul 34469, Turkey
| | - Serdar Bozoglu
- Energy
Institute, Renewable Energy Division, Istanbul
Technical University, Maslak, Istanbul 34469, Turkey
| | - Nilgun Karatepe
- Energy
Institute, Renewable Energy Division, Istanbul
Technical University, Maslak, Istanbul 34469, Turkey
| | - Saime Batirel
- Department
of Biochemistry, Faculty of Medicine, Marmara
University, Istanbul 34854, Turkey
| | - Ali Sahin
- Department
of Biochemistry, Faculty of Medicine, Marmara
University, Istanbul 34854, Turkey
- Genetic
and Metabolic Diseases Research Center (GEMHAM), Marmara University, Istanbul 34854, Turkey
| | - Fatma Seniha Güner
- Department
of Chemical Engineering, Istanbul Technical
University, Maslak, Istanbul 34469, Turkey
- Sabancı
University Nanotechnology Research and Application Center (SUNUM), Sabancı University, Istanbul 34956, Turkey
| |
Collapse
|
4
|
Yazdani S, Mozaffarian M, Pazuki G, Hadidi N, Villate-Beitia I, Zárate J, Puras G, Pedraz JL. Carbon-Based Nanostructures as Emerging Materials for Gene Delivery Applications. Pharmaceutics 2024; 16:288. [PMID: 38399344 PMCID: PMC10891563 DOI: 10.3390/pharmaceutics16020288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/03/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Gene therapeutics are promising for treating diseases at the genetic level, with some already validated for clinical use. Recently, nanostructures have emerged for the targeted delivery of genetic material. Nanomaterials, exhibiting advantageous properties such as a high surface-to-volume ratio, biocompatibility, facile functionalization, substantial loading capacity, and tunable physicochemical characteristics, are recognized as non-viral vectors in gene therapy applications. Despite progress, current non-viral vectors exhibit notably low gene delivery efficiency. Progress in nanotechnology is essential to overcome extracellular and intracellular barriers in gene delivery. Specific nanostructures such as carbon nanotubes (CNTs), carbon quantum dots (CQDs), nanodiamonds (NDs), and similar carbon-based structures can accommodate diverse genetic materials such as plasmid DNA (pDNA), messenger RNA (mRNA), small interference RNA (siRNA), micro RNA (miRNA), and antisense oligonucleotides (AONs). To address challenges such as high toxicity and low transfection efficiency, advancements in the features of carbon-based nanostructures (CBNs) are imperative. This overview delves into three types of CBNs employed as vectors in drug/gene delivery systems, encompassing their synthesis methods, properties, and biomedical applications. Ultimately, we present insights into the opportunities and challenges within the captivating realm of gene delivery using CBNs.
Collapse
Affiliation(s)
- Sara Yazdani
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran P.O. Box 15875-4413, Iran; (S.Y.); (G.P.)
- NanoBioCel Research Group, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (I.V.-B.); (J.Z.); (G.P.)
| | - Mehrdad Mozaffarian
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran P.O. Box 15875-4413, Iran; (S.Y.); (G.P.)
| | - Gholamreza Pazuki
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran P.O. Box 15875-4413, Iran; (S.Y.); (G.P.)
| | - Naghmeh Hadidi
- Department of Clinical Research and EM Microscope, Pasteur Institute of Iran (PII), Tehran P.O. Box 131694-3551, Iran;
| | - Ilia Villate-Beitia
- NanoBioCel Research Group, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (I.V.-B.); (J.Z.); (G.P.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Calle José Achotegui s/n, 01009 Vitoria-Gasteiz, Spain
| | - Jon Zárate
- NanoBioCel Research Group, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (I.V.-B.); (J.Z.); (G.P.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Calle José Achotegui s/n, 01009 Vitoria-Gasteiz, Spain
| | - Gustavo Puras
- NanoBioCel Research Group, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (I.V.-B.); (J.Z.); (G.P.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Calle José Achotegui s/n, 01009 Vitoria-Gasteiz, Spain
| | - Jose Luis Pedraz
- NanoBioCel Research Group, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (I.V.-B.); (J.Z.); (G.P.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Calle José Achotegui s/n, 01009 Vitoria-Gasteiz, Spain
| |
Collapse
|
5
|
Holghoomi R, Hosseini Sarghein S, Khara J, Hosseini B, Rahdar A, Kyzas GZ. Foliar application of Phenylalanine functionalized multi-walled carbon nanotube improved the content of volatile compounds of basil grown in greenhouse. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27748-x. [PMID: 37253914 DOI: 10.1007/s11356-023-27748-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 05/15/2023] [Indexed: 06/01/2023]
Abstract
Carbon nanotubes are among the elicitors that have different effects on plants. Basil as a useful and valuable plant has significant medicinal properties; The aim of this research is to study the effect of different concentrations of functionalized multi-walled carbon nanotubes with phenylalanine and non-functionalized in concentrations of (0, 50, 100, 150 and 200 mg.l-1) and activated carbon on total phenol and flavonoid content, antioxidant capacity, the content of H2O2, reactive oxygen species detection, antioxidant enzyme activity, and the concentration of volatile compounds of basil in the greenhouse culture, in an experiment in the form of a completely randomized design with three replications, and in the faculty of sciences of Urmia university's laboratory. The highest content of total phenol, flavonoid, anthocyanin, antioxidant capacity and hydrogen peroxide content were observed in the 200 mg.l-1 functionalized carbon nanotube. The highest percentage of alpha-Copaene, trans-alpha-Bergamotene, alpha-Guaiene, Bicyclogermacrene, 1,10-di-epi-Cubenol and alpha-Eudesmol compounds at 150 mg.l-1 of functionalized carbon nanotube and the highest percentage of compounds 1,8-cineole and eugenol was observed at 100 mg.l-1 of functionalized carbon nanotube. The compounds of linalool, camphor and anethole also showed their highest amount in treatments of 200, 150 and 50 mg.l-1 of carbon nanotube, respectively. In general, the observations of this research indicated that the use of functionalized carbon nanotubes as a stimulant has increased the antioxidant capacity of basil and on the other hand, it has led to an improving in the content of secondary metabolites.
Collapse
Affiliation(s)
- Roghaieh Holghoomi
- Department of Biology, Faculty of Science, Urmia University, P.O. Box 165, Urmia, Iran
| | | | - Jalil Khara
- Department of Biology, Faculty of Science, Urmia University, P.O. Box 165, Urmia, Iran
| | - Bahman Hosseini
- Department of Horticulture, Faculty of Agriculture, Urmia University, P.O. Box 165, Urmia, Iran
| | - Abbas Rahdar
- Department of Physics, Faculty of science, University of Zabol, Zabol, 538-98615, Iran
| | - George Z Kyzas
- Department of Chemistry, International Hellenic University, Kavala, Greece.
| |
Collapse
|
6
|
Wulf V, Bisker G. Single-Walled Carbon Nanotubes as Fluorescent Probes for Monitoring the Self-Assembly and Morphology of Peptide/Polymer Hybrid Hydrogels. NANO LETTERS 2022; 22:9205-9214. [PMID: 36259520 PMCID: PMC9706665 DOI: 10.1021/acs.nanolett.2c01587] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/12/2022] [Indexed: 05/20/2023]
Abstract
Hydrogels formed via supramolecular self-assembly of fluorenylmethyloxycarbonyl (Fmoc)-conjugated amino acids provide excellent scaffolds for 3D cell culture, tissue engineering, and tissue recovery matrices. Such hydrogels are usually characterized by rheology or electron microscopy, which are invasive and cannot provide real-time information. Here, we incorporate near-infrared fluorescent single-walled carbon nanotubes (SWCNTs) into Fmoc-diphenylalanine hydrogels as fluorescent probes, reporting in real-time on the morphology and time-dependent structural changes of the self-assembled hydrogels in the transparency window of biological tissue. We further demonstrate that the gelation process and structural changes upon the addition of cross-linking ions are transduced into spectral modulations of the SWCNT-fluorescence. Moreover, morphological differences of the hydrogels induced by polymer additives are manifested in unique features in fluorescence images of the incorporated SWCNTs. SWCNTs can thus serve as optical probes for noninvasive, long-term monitoring of the self-assembly gelation process and the fate of the resulting peptide hydrogel during long-term usage.
Collapse
Affiliation(s)
- Verena Wulf
- Department
of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Gili Bisker
- Department
of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Tel Aviv 6997801, Israel
- The
Center for Physics and Chemistry of Living Systems, Tel-Aviv University, Tel Aviv 6997801, Israel
- Center
for Nanoscience and Nanotechnology, Tel-Aviv
University, Tel Aviv 6997801, Israel
- Center
for Light Matter Interaction, Tel-Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|