1
|
Tang C, Shen T, Bai X, Wang Y, Zhang J, Kan Y, Li D, Yao L, Shi H. Improving Biosynthesis Efficiency of Nicotinamide Mononucleotide by ATP Recycling Engineering and Condition Optimization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:11200-11208. [PMID: 40266008 DOI: 10.1021/acs.jafc.5c03017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Nicotinamide mononucleotide (NMN) is a very important bioactive nucleotide that is of great help to human health. However, its widespread application has been limited by its high production costs, especially the cost of the core substrates, coenzyme, and enzymes. In this study, the ADP/GDP-polyphosphate phosphotransferase RhPPK2 originating from Rhodobacter sphaeroides was successfully expressed in Escherichia coli with high-level solubility, and the enzyme activity in the lysate supernatant reached 21.9 ± 0.65 U/mL. And then, the temperature profiles, pH profiles, and kinetic parameters of purified reRhPPK2 were systematically characterized, which demonstrate its potential for application in enzymatic ATP regeneration systems. Furthermore, the introduction of reRhPPK2 for ATP regeneration significantly enhanced NMN production efficiency, achieving a 2.3-fold increase compared to the conventional ATP supplementation method. Finally, the production efficiency of NMN was further improved by a single-factor experiment and L9(34) orthogonal design, and the yield was up to 14.6 ± 0.51 g/L, about 5.4 times of the initial yield. This research substantially reduced NMN production costs and established a robust foundation for industrial-scale NMN production.
Collapse
Affiliation(s)
- Cunduo Tang
- Henan Key Laboratory of Insect Biology, Henan Province Engineering Research Center of Insect Bioreactor, China-UK International Joint Laboratory for Insect Biology of Henan Province, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan 473061, People's Republic of China
| | - Taisong Shen
- Henan Key Laboratory of Insect Biology, Henan Province Engineering Research Center of Insect Bioreactor, China-UK International Joint Laboratory for Insect Biology of Henan Province, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan 473061, People's Republic of China
| | - Xueyang Bai
- Henan Key Laboratory of Insect Biology, Henan Province Engineering Research Center of Insect Bioreactor, China-UK International Joint Laboratory for Insect Biology of Henan Province, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan 473061, People's Republic of China
| | - Yao Wang
- Henan Key Laboratory of Insect Biology, Henan Province Engineering Research Center of Insect Bioreactor, China-UK International Joint Laboratory for Insect Biology of Henan Province, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan 473061, People's Republic of China
| | - Jiashu Zhang
- College of Animal Science and Technology, Northwest A&F University, 3 Taicheng Road, Yangling, Shaanxi 712100, People's Republic of China
| | - Yunchao Kan
- Henan Key Laboratory of Insect Biology, Henan Province Engineering Research Center of Insect Bioreactor, China-UK International Joint Laboratory for Insect Biology of Henan Province, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan 473061, People's Republic of China
| | - Dandan Li
- Henan Key Laboratory of Insect Biology, Henan Province Engineering Research Center of Insect Bioreactor, China-UK International Joint Laboratory for Insect Biology of Henan Province, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan 473061, People's Republic of China
| | - Lunguang Yao
- Henan Key Laboratory of Insect Biology, Henan Province Engineering Research Center of Insect Bioreactor, China-UK International Joint Laboratory for Insect Biology of Henan Province, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan 473061, People's Republic of China
| | - Hongling Shi
- Henan Key Laboratory of Insect Biology, Henan Province Engineering Research Center of Insect Bioreactor, China-UK International Joint Laboratory for Insect Biology of Henan Province, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan 473061, People's Republic of China
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, People's Republic of China
| |
Collapse
|
2
|
Zhang X, Zhang X, Shi H, Zhang H, Zhang J, Yue C, Li D, Yao L, Tang C. Combining Flexible Region Design and Automatic Design to Enhance the Thermal Stability and Catalytic Efficiency of Leucine Dehydrogenase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38838197 DOI: 10.1021/acs.jafc.4c02152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Leucine dehydrogenase (LeuDH, EC 1.4.1.9) can reversibly catalyze the oxidative deamination of l-leucine and some other specific α-amino acids to form the corresponding α-ketoacids. This reaction has great significance in the field of food additives and the pharmaceutical industry. The LeuDH from Exiguobacterium sibiricum (EsLeuDH) has high catalytic efficiency but limited thermal stability, hindering its widespread industrial application. In this study, a mutant N5F/I12L/A352Y of EsLeuDH (referred to as M2) was developed with enhanced thermal stability and catalytic activity through rational modification. The M2 mutant exhibits a half-life at 60 °C (t1/2(60 °C)) of 975.7 min and a specific activity of 69.6 U mg-1, which is 5.4 and 2.1 times higher than those of EsLeuDH, respectively. This research may facilitate the utilization of EsLeuDH at elevated temperatures, enhancing its potential for industrial applications. The findings offer a practical and efficient approach for optimizing LeuDH and other industrial enzymes.
Collapse
Affiliation(s)
- Xiang Zhang
- College of Life Science, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan 473061, People's Republic of China
| | - Xichuan Zhang
- College of Life Science, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan 473061, People's Republic of China
| | - Hongling Shi
- College of Life Science, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan 473061, People's Republic of China
| | - Huimin Zhang
- College of Animal Science and Technology, Yangzhou University, 88 South Daxue Road, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Jianhui Zhang
- Postdoctoral Innovation Training Base, She Dian Lao Jiu Co. Ltd., 2 Liquor Avenue, Nanyang, Henan 473300, People's Republic of China
| | - Chao Yue
- College of Life Science, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan 473061, People's Republic of China
| | - Dandan Li
- College of Life Science, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan 473061, People's Republic of China
| | - Lunguang Yao
- College of Life Science, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan 473061, People's Republic of China
| | - Cunduo Tang
- College of Life Science, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan 473061, People's Republic of China
- Postdoctoral Innovation Training Base, She Dian Lao Jiu Co. Ltd., 2 Liquor Avenue, Nanyang, Henan 473300, People's Republic of China
| |
Collapse
|
3
|
Liu XX, Wang Y, Zhang JH, Lu YF, Dong ZX, Yue C, Huang XQ, Zhang SP, Li DD, Yao LG, Tang CD. Engineering Escherichia coli for high-yielding 2,5-Dimethylpyrazine synthesis from L-Threonine by reconstructing metabolic pathways and enhancing cofactors regeneration. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:44. [PMID: 38500189 PMCID: PMC10949639 DOI: 10.1186/s13068-024-02487-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/04/2024] [Indexed: 03/20/2024]
Abstract
2,5-Dimethylpyrazine (2,5-DMP) is important pharmaceutical raw material and food flavoring agent. Recently, engineering microbes to produce 2,5-DMP has become an attractive alternative to chemical synthesis approach. In this study, metabolic engineering strategies were used to optimize the modified Escherichia coli BL21 (DE3) strain for efficient synthesis of 2,5-DMP using L-threonine dehydrogenase (EcTDH) from Escherichia coli BL21, NADH oxidase (EhNOX) from Enterococcus hirae, aminoacetone oxidase (ScAAO) from Streptococcus cristatus and L-threonine transporter protein (EcSstT) from Escherichia coli BL21, respectively. We further optimized the reaction conditions for synthesizing 2,5-DMP. In optimized conditions, the modified strain can convert L-threonine to obtain 2,5-DMP with a yield of 2897.30 mg/L. Therefore, the strategies used in this study contribute to the development of high-level cell factories for 2,5-DMP.
Collapse
Affiliation(s)
- Xin-Xin Liu
- Henan Provincial Engineering Laboratory of Insect Bio-Reactor, Henan International Joint Laboratory of Insect Biology and Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan, 473061, People's Republic of China
| | - Yao Wang
- Henan Provincial Engineering Laboratory of Insect Bio-Reactor, Henan International Joint Laboratory of Insect Biology and Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan, 473061, People's Republic of China
| | - Jian-Hui Zhang
- Postdoctoral Innovation Practice Base, She Dian Lao Jiu Co. Ltd., 2 Liquor Avenue, Nanyang, Henan, 473300, People's Republic of China
| | - Yun-Feng Lu
- Henan Provincial Engineering Laboratory of Insect Bio-Reactor, Henan International Joint Laboratory of Insect Biology and Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan, 473061, People's Republic of China
| | - Zi-Xing Dong
- Henan Provincial Engineering Laboratory of Insect Bio-Reactor, Henan International Joint Laboratory of Insect Biology and Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan, 473061, People's Republic of China
| | - Chao Yue
- Henan Provincial Engineering Laboratory of Insect Bio-Reactor, Henan International Joint Laboratory of Insect Biology and Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan, 473061, People's Republic of China
| | - Xian-Qing Huang
- College of Food Science and Technology, Henan Agricultural University, 63 Agricultural Road, Zhengzhou, Henan, 450002, People's Republic of China
| | - Si-Pu Zhang
- Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
| | - Dan-Dan Li
- Henan Provincial Engineering Laboratory of Insect Bio-Reactor, Henan International Joint Laboratory of Insect Biology and Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan, 473061, People's Republic of China.
| | - Lun-Guang Yao
- Henan Provincial Engineering Laboratory of Insect Bio-Reactor, Henan International Joint Laboratory of Insect Biology and Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan, 473061, People's Republic of China.
| | - Cun-Duo Tang
- Henan Provincial Engineering Laboratory of Insect Bio-Reactor, Henan International Joint Laboratory of Insect Biology and Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan, 473061, People's Republic of China.
- Postdoctoral Innovation Practice Base, She Dian Lao Jiu Co. Ltd., 2 Liquor Avenue, Nanyang, Henan, 473300, People's Republic of China.
- College of Food Science and Technology, Henan Agricultural University, 63 Agricultural Road, Zhengzhou, Henan, 450002, People's Republic of China.
| |
Collapse
|
4
|
Abdel-Hady GN, Tajima T, Ikeda T, Ishida T, Funabashi H, Kuroda A, Hirota R. A novel salt- and organic solvent-tolerant phosphite dehydrogenase from Cyanothece sp. ATCC 51142. Front Bioeng Biotechnol 2023; 11:1255582. [PMID: 37662428 PMCID: PMC10473253 DOI: 10.3389/fbioe.2023.1255582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023] Open
Abstract
Phosphite dehydrogenase (PtxD) is a promising enzyme for NAD(P)H regeneration. To expand the usability of PtxD, we cloned, expressed, and analyzed PtxD from the marine cyanobacterium Cyanothece sp. ATCC 51142 (Ct-PtxD). Ct-PtxD exhibited maximum activity at pH 9.0°C and 50°C and high stability over a wide pH range of 6.0-10.0. Compared to previously reported PtxDs, Ct-PtxD showed increased resistance to salt ions such as Na+, K+, and NH4 +. It also exhibited high tolerance to organic solvents such as ethanol, dimethylformamide, and methanol when bound to its preferred cofactor, NAD+. Remarkably, these organic solvents enhanced the Ct-PtxD activity while inhibiting the PtxD activity of Ralstonia sp. 4506 (Rs-PtxD) at concentrations ranging from 10% to 30%. Molecular electrostatic potential analysis showed that the NAD+-binding site of Ct-PtxD was rich in positively charged residues, which may attract the negatively charged pyrophosphate group of NAD+ under high-salt conditions. Amino acid composition analysis revealed that Ct-PtxD contained fewer hydrophobic amino acids than other PtxD enzymes, which reduced the hydrophobicity and increased the hydration of protein surface under low water activity. We also demonstrated that the NADH regeneration system using Ct-PtxD is useful for the coupled chiral conversion of trimethylpyruvic acid into L-tert-leucine using leucine dehydrogenase under high ammonium conditions, which is less supported by the Rs-PtxD enzyme. These results imply that Ct-PtxD might be a potential candidate for NAD(P)H regeneration in industrial applications under the reaction conditions containing salt and organic solvent.
Collapse
Affiliation(s)
- Gamal Nasser Abdel-Hady
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Department of Genetics, Faculty of Agriculture, Minia University, Minia, Egypt
| | - Takahisa Tajima
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Seto Inland Sea Carbon-neutral Research Center, Hiroshima University, Hiroshima, Japan
| | - Takeshi Ikeda
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Takenori Ishida
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Hisakage Funabashi
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Seto Inland Sea Carbon-neutral Research Center, Hiroshima University, Hiroshima, Japan
| | - Akio Kuroda
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Seto Inland Sea Carbon-neutral Research Center, Hiroshima University, Hiroshima, Japan
| | - Ryuichi Hirota
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Seto Inland Sea Carbon-neutral Research Center, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
5
|
He JJ, Liu XX, Li Y, Wang Z, Shi HL, Kan YC, Yao LG, Tang CD. High level expression of nicotinamide nucleoside kinase from Saccharomyces cerevisiae and its purification and immobilization by one-step method. Front Bioeng Biotechnol 2023; 11:1134152. [PMID: 36873348 PMCID: PMC9975500 DOI: 10.3389/fbioe.2023.1134152] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Nicotinamide riboside kinase (NRK) plays an important role in the synthesis of β -nicotinamide nucleotide (NMN). NMN is a key intermediate of NAD+ synthesis, and it actually contribute to the well-being of our health. In this study, gene mining technology was used to clone nicotinamide nucleoside kinase gene fragments from S. cerevisiae, and the ScNRK1 was achieved a high level of soluble expression in E. coli BL21. Then, the reScNRK1 was immobilized by metal affinity label to optimize the enzyme performance. The results showed that the enzyme activity in the fermentation broth was 14.75 IU/mL, and the specific enzyme activity after purification was 2252.59 IU/mg. After immobilization, the optimum temperature of the immobilized enzyme was increased by 10°C compared with the free enzyme, and the temperature stability was improved with little change in pH. Moreover, the activity of the immobilized enzyme remained above 80% after four cycles of immobilized reScNRK1, which makes the enzyme more advantageous in the enzymatic synthesis of NMN.
Collapse
Affiliation(s)
- Jian-Ju He
- Henan Provincial Key Laboratory of Funiu Mountain Insect Biology and Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang Normal University, Nanyang, China
- College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, China
| | - Xin-Xin Liu
- Henan Provincial Key Laboratory of Funiu Mountain Insect Biology and Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang Normal University, Nanyang, China
- College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, China
| | - Ying Li
- Henan Provincial Key Laboratory of Funiu Mountain Insect Biology and Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang Normal University, Nanyang, China
- College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, China
| | - Zhe Wang
- Henan Provincial Key Laboratory of Funiu Mountain Insect Biology and Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang Normal University, Nanyang, China
- College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, China
| | - Hong-Ling Shi
- Henan Provincial Key Laboratory of Funiu Mountain Insect Biology and Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang Normal University, Nanyang, China
- College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, China
| | - Yun-Chao Kan
- Henan Provincial Key Laboratory of Funiu Mountain Insect Biology and Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang Normal University, Nanyang, China
| | - Lun-Guang Yao
- Henan Provincial Key Laboratory of Funiu Mountain Insect Biology and Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang Normal University, Nanyang, China
- College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, China
| | - Cun-Duo Tang
- Henan Provincial Key Laboratory of Funiu Mountain Insect Biology and Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang Normal University, Nanyang, China
- College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, China
| |
Collapse
|