1
|
Liang L, Jin Z, Tao Y, Li Y, Zhao Z, Zhang Y. Enhanced Extracellular Electron Transfer in Magnetite-Mediated Anaerobic Oxidation of Methane Coupled to Humic Substances Reduction: The Pivotal Role of Membrane-Bound Electron Transfer Proteins. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17756-17765. [PMID: 39323212 DOI: 10.1021/acs.est.4c05543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Humic substances are organic substances prevalent in various natural environments, such as wetlands, which are globally important sources of methane (CH4) emissions. Extracellular electron transfer (EET)-mediated anaerobic oxidation of methane (AOM)-coupled with humic substances reduction plays an important role in the reduction of methane emissions from wetlands, where magnetite is prevalent. However, little is known about the magnetite-mediated EET mechanisms in AOM-coupled humic substances reduction. This study shows that magnetite promotes the reduction of the AOM-coupled humic substances model compound, anthraquinone-2,6-disulfonate (AQDS). 13CH4 labeling experiments further indicated that AOM-coupled AQDS reduction occurred, and acetate was an intermediate product of AOM. Moreover, 13CH313COONa labeling experiments showed that AOM-generated acetate can be continuously reduced to methane in a state of dynamic equilibrium. In the presence of magnetite, the EET capacity of the microbial community increased, and Methanosarcina played a key role in the AOM-coupled AQDS reduction. Pure culture experiments showed that Methanosarcina barkeri can independently perform AOM-coupled AQDS reduction and that magnetite increased its surface protein redox activity. The metatranscriptomic results indicated that magnetite increased the expression of membrane-bound proteins involved in energy metabolism and electron transfer in M. barkeri, thereby increasing the EET capacity. This phenomenon potentially elucidates the rationale as to why magnetite promoted AOM-coupled AQDS reduction.
Collapse
Affiliation(s)
- Lianfu Liang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhen Jin
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yang Tao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yang Li
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Zhiqiang Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yaobin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
2
|
Weliwatte NS, Chen H, Tang T, Minteer SD. Three-Stage Conversion of Chemically Inert n-Heptane to α-Hydrazino Aldehyde Based on Bioelectrocatalytic C-H Bond Oxyfunctionalization. ACS Catal 2023; 13:563-572. [PMID: 36644649 PMCID: PMC9830989 DOI: 10.1021/acscatal.2c04003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/12/2022] [Indexed: 12/24/2022]
Abstract
Simple petrochemical feedstocks are often the starting material for the synthesis of complex commodity and fine and specialty chemicals. Designing synthetic pathways for these complex and specific molecular structures with sufficient chemo-, regio-, enantio-, and diastereo-selectivity can expand the existing petrochemicals landscape. The two overarching challenges in designing such pathways are selective activation of chemically inert C-H bonds in hydrocarbons and systematic functionalization to synthesize complex structures. Multienzyme cascades are becoming a growing means of overcoming the first challenge. However, extending multienzyme cascade designs is restricted by the arsenal of enzymes currently at our disposal and the compatibility between specific enzymes. Here, we couple a bioelectrocatalytic multienzyme cascade to organocatalysis, which are two distinctly different classes of catalysis, in a single system to address both challenges. Based on the development and utilization of an anthraquinone (AQ)-based redox polymer, the bioelectrocatalytic step achieves regioselective terminal C-H bond oxyfunctionalization of chemically inert n-heptane. A second biocatalytic step selectively oxidizes the resulting 1-heptanol to heptanal. The succeeding inherently simple and durable l-proline-based organocatalysis step is a complementary partner to the multienzyme steps to further functionalize heptanal to the corresponding α-hydrazino aldehyde. The "three-stage" streamlined design exerts much control over the chemical conversion, which renders the collective system a versatile and adaptable model for a broader substrate scope and more complex C-H functionalization.
Collapse
|
3
|
Chen M, Cai Q, Chen X, Huang S, Feng Q, Majima T, Zeng RJ, Zhou S. Anthraquinone-2-Sulfonate as a Microbial Photosensitizer and Capacitor Drives Solar-to-N 2O Production with a Quantum Efficiency of Almost Unity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5161-5169. [PMID: 35312317 DOI: 10.1021/acs.est.1c08710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Semiartificial photosynthesis shows great potential in solar energy conversion and environmental application. However, the rate-limiting step of photoelectron transfer at the biomaterial interface results in an unsatisfactory quantum yield (QY, typically lower than 3%). Here, an anthraquinone molecule, which has dual roles of microbial photosensitizer and capacitor, was demonstrated to negotiate the interface photoelectron transfer via decoupling the photochemical reaction with a microbial dark reaction. In a model system, anthraquinone-2-sulfonate (AQS)-photosensitized Thiobacillus denitrificans, a maximum QY of solar-to-nitrous oxide (N2O) of 96.2% was achieved, which is the highest among the semiartificial photosynthesis systems. Moreover, the conversion of nitrate into N2O was almost 100%, indicating the excellent selectivity in nitrate reduction. The capacitive property of AQS resulted in 82-89% of photoelectrons released at dark and enhanced 5.6-9.4 times the conversion of solar-to-N2O. Kinetics investigation revealed a zero-order- and first-order- reaction kinetics of N2O production in the dark (reductive AQS-mediated electron transfer) and under light (direct photoelectron transfer), respectively. This work is the first study to demonstrate the role of AQS in photosensitizing a microorganism and provides a simple and highly selective approach to produce N2O from nitrate-polluted wastewater and a strategy for the efficient conversion of solar-to-chemical by a semiartificial photosynthesis system.
Collapse
Affiliation(s)
- Man Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Quanhua Cai
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiangyu Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Shaofu Huang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Qinyuan Feng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Tetsuro Majima
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Raymond Jianxiong Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|