1
|
Ashoka Sreeja H, Couso-Queiruga E, Raabe C, Chappuis V, Asparuhova MB. Biofunctionalization of Collagen Barrier Membranes with Bone-Conditioned Medium, as a Natural Source of Growth Factors, Enhances Osteoblastic Cell Behavior. Int J Mol Sci 2025; 26:1610. [PMID: 40004074 PMCID: PMC11855076 DOI: 10.3390/ijms26041610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
A key principle of guided bone regeneration (GBR) is the use of a barrier membrane to prevent cells from non-osteogenic tissues from interfering with bone regeneration in patients with hard tissue deficiencies. The aim of the study was to investigate whether the osteoinductive properties of bone-conditioned medium (BCM) obtained from cortical bone chips harvested at the surgical site can be transferred to a native bilayer collagen membrane (nbCM). BCM extracted within 20 or 40 min, which corresponds to a typical implant surgical procedure, and BCM extracted within 24 h, which corresponds to BCM released from the autologous bone chips in situ, contained significant and comparable amounts of TGF-β1, IGF-1, FGF-2, VEGF-A, and IL-11. Significant (p < 0.001) quantities of BMP-2 were only detected in the 24-h BCM preparation. The bioactive substances contained in the BCM were adsorbed to the nbCMs with almost 100% efficiency. A fast but sequential release of all investigated proteins occurred within 6-72 h, reflecting their stepwise involvement in the natural regeneration process. BCM-coated nbCM significantly (p < 0.05) increased the migratory, adhesive, and proliferative capacity of primary human bone-derived cells (hBC), primary human periodontal ligament cells (hPDLC), and an osteosarcoma-derived osteoblastic cell line (MG-63) compared to cells cultured on BCM-free nbCM. The high proliferative rates of MG-63 cells cultured on BCM-free nbCM were not further potentiated by BCM, indicating that BCM-coated nbCM has no detrimental effects on cancer cell growth. BCM-coated nbCM caused significant (p < 0.05) induction of early osteogenic marker gene expression and alkaline phosphatase activity, suggesting an important role of BCM-functionalized nbCM in the initiation of osteogenesis. The 24-h BCM loaded on the nbCM was the only BCM preparation that caused significant induction of late osteogenic marker gene expression. Altogether, our data define the pre-activation of collagen membranes with short-term-extracted BCM as a potential superior modality for treating hard tissue deficiencies via GBR.
Collapse
Affiliation(s)
- Harshitha Ashoka Sreeja
- Laboratory of Oral Cell Biology, Dental Research Center, School of Dental Medicine, University of Bern, Freiburgstrasse 3, 3010 Bern, Switzerland
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland
| | - Emilio Couso-Queiruga
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland
| | - Clemens Raabe
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland
| | - Vivianne Chappuis
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland
| | - Maria B. Asparuhova
- Laboratory of Oral Cell Biology, Dental Research Center, School of Dental Medicine, University of Bern, Freiburgstrasse 3, 3010 Bern, Switzerland
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland
| |
Collapse
|
2
|
van Orten A, Goetz W, Bilhan H. A Novel Prehydrated Porcine-Derived Acellular Dermal Matrix: A Histological and Clinical Evaluation. Int J Biomater 2024; 2024:7322223. [PMID: 38966862 PMCID: PMC11223909 DOI: 10.1155/2024/7322223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 07/06/2024] Open
Abstract
It is well known that soft tissue quality and quantity around dental implants is of paramount importance for later peri-implant health. For this purpose, the clinical and histological outcomes of the peri-implant mucosa, following soft tissue augmentation for soft tissue improvement with a novel prehydrated porcine acellular dermal matrix graft (PPADMG) in conjunction with simultaneous implant placement, were evaluated in this case series. Twenty-two patients were included in the study. They underwent a late implant placement protocol combined with PPADMG for soft tissue augmentation. A punch biopsy was taken at the time of uncovery of the submerged healed implant after a mean of 157 days healing time. Supracrestal soft tissue height (STH) was measured at the time of implant placement and uncovery. All sites showed a clinical increase in STH. The histological structure of the biopsies resembled a similar structure as found in the healthy oral mucosa. No unexpected tissue reactions could be found. Within the limits of this clinical and histological study, it may be concluded that STH improvement with this novel porcine-derived acellular dermal matrix, in combination with simultaneous implant placement, is a viable option to create a peri-implant tissue thickness and stability.
Collapse
Affiliation(s)
- Andreas van Orten
- Private Dental Practice Do24, Dortmunder Str. 24–28, 45731 Waltrop, Germany
| | - Werner Goetz
- Policlinic of OrthodonticsCentre for Dental CareBasic Science Research in Oral BiologyFriedrich-Wilhelms University, Welschnonnenstr. 17, 53111 Bonn, Germany
| | - Hakan Bilhan
- Department of PeriodontologySchool for Health SciencesWitten/Herdecke University, Alfred-Herrhausen-Str. 45, 58448 Witten, Germany
| |
Collapse
|
3
|
Asparuhova MB, Song X, Riedwyl D, van Geest G, Bosshardt DD, Sculean A. Differential molecular profiles and associated functionalities characterize connective tissue grafts obtained at different locations and depths in the human palate. Int J Oral Sci 2023; 15:57. [PMID: 38072943 PMCID: PMC10711016 DOI: 10.1038/s41368-023-00260-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023] Open
Abstract
The present study aimed to assess the molecular profiles of subepithelial connective tissue grafts (CTGs) obtained at different locations and depths in the human palate. Sixty-four CTGs belonging to anterior deep (AD), anterior superficial (AS), posterior deep (PD), and posterior superficial (PS) groups were subjected to RNA-Sequencing and their transcriptomes were analyzed computationally. Functional correlations characterizing the CTG groups were validated by cell biological experiments using primary human palatal fibroblasts (HPFs) extracted from the CTGs. A clearly more pronounced location-dependent than depth-dependent difference between the grafts, with a minimal number of genes (4) showing no dependence on the location, was revealed. Epithelial, endothelial, and monocytic cell migration was strongly (P < 0.001) potentiated by AD- and PS-HPFs. Moreover, significantly increased expression of genes encoding C-C and C-X-C motif chemokine ligands as well as significantly (P < 0.01) activated p38 signaling suggested immunomodulatory phenotype for AD- and PS-HPFs. Increased growth factor gene expression and significantly activated (P < 0.001) Erk and Akt signaling in HPFs originating from A-CTGs implied their involvement in cell survival, proliferation, and motility. Prominent collagen-rich expression profile contributing to high mechanical stability, increased osteogenesis-related gene expression, and strongly activated (P < 0.001) Smad1/5/8 signaling characterized HPFs originating from P-CTGs. The present data indicate that in humans, differences between palatal CTGs harvested from different locations and depths appear to be location- rather than depth-dependent. Our findings provide the basis for future personalization of the therapeutic strategy by selecting an optimal graft type depending on the clinical indications.
Collapse
Affiliation(s)
- Maria B Asparuhova
- Laboratory of Oral Cell Biology, School of Dental Medicine, University of Bern, Bern, Switzerland.
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland.
| | - Xiaoqing Song
- Laboratory of Oral Cell Biology, School of Dental Medicine, University of Bern, Bern, Switzerland
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Dominic Riedwyl
- Laboratory of Oral Cell Biology, School of Dental Medicine, University of Bern, Bern, Switzerland
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Geert van Geest
- Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland
| | - Dieter D Bosshardt
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
- Robert K. Schenk Laboratory of Oral Histology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Asparuhova MB, Riedwyl D, Aizawa R, Raabe C, Couso-Queiruga E, Chappuis V. Local Concentrations of TGF-β1 and IGF-1 Appear Determinant in Regulating Bone Regeneration in Human Postextraction Tooth Sockets. Int J Mol Sci 2023; 24:ijms24098239. [PMID: 37175951 PMCID: PMC10179638 DOI: 10.3390/ijms24098239] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Healing after tooth extraction involves a series of reparative processes affecting both alveolar bone and soft tissues. The aim of the present study was to investigate whether activation of molecular signals during the healing process confers a regenerative advantage to the extraction socket soft tissue (ESsT) at 8 weeks of healing. Compared to subepithelial connective tissue graft (CTG), qRT-PCR analyses revealed a dramatic enrichment of the ESsT in osteogenic differentiation markers. However, ESsT and CTG shared characteristics of nonspecialized soft connective tissue by expressing comparable levels of genes encoding abundant extracellular matrix (ECM) proteins. Genes encoding the transforming growth factor-β1 (TGF-β1) and its receptors were strongly enriched in the CTG, whereas the transcript for the insulin-like growth factor-1 (IGF-1) showed significantly high and comparable expression in both tissues. Mechanical stimulation, by the means of cyclic strain or matrix stiffness applied to primary ESsT cells (ESsT-C) and CTG fibroblasts (CTG-F) extracted from the tissue samples, revealed that stress-induced TGF-β1 not exceeding 2.3 ng/mL, as measured by ELISA, in combination with IGF-1 up to 2.5 ng/mL was able to induce the osteogenic potential of ESsT-Cs. However, stiff matrices (50 kPa), upregulating the TGF-β1 expression up to 6.6 ng/mL, caused downregulation of osteogenic gene expression in the ESsT-Cs. In CTG-Fs, endogenous or stress-induced TGF-β1 ≥ 4.6 ng/mL was likely responsible for the complete lack of osteogenesis. Treatment of ESsT-Cs with TGF-β1 and IGF-1 proved that, at specific concentrations, the two growth factors exhibited either an inductive-synergistic or a suppressive activity, thus determining the osteogenic and mineralization potential of ESsT-Cs. Taken together, our data strongly warrant the clinical exploration of ESsT as a graft in augmentative procedures during dental implant placement surgeries.
Collapse
Affiliation(s)
- Maria B Asparuhova
- Laboratory of Oral Cell Biology, Dental Research Center, School of Dental Medicine, University of Bern, Freiburgstrasse 3, 3010 Bern, Switzerland
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland
| | - Dominic Riedwyl
- Laboratory of Oral Cell Biology, Dental Research Center, School of Dental Medicine, University of Bern, Freiburgstrasse 3, 3010 Bern, Switzerland
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland
| | - Ryo Aizawa
- Laboratory of Oral Cell Biology, Dental Research Center, School of Dental Medicine, University of Bern, Freiburgstrasse 3, 3010 Bern, Switzerland
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland
- Department of Periodontology, School of Dentistry, Showa University, 2-1-1 Kitasenzoku, Ohta-ku, Tokyo 145-8515, Japan
| | - Clemens Raabe
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland
| | - Emilio Couso-Queiruga
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland
| | - Vivianne Chappuis
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland
| |
Collapse
|
5
|
Lee JH, Kweon H, Oh JH, Kim SG. The optimal scaffold for silk sericin-based bone graft: collagen versus gelatin. Maxillofac Plast Reconstr Surg 2023; 45:2. [PMID: 36617599 PMCID: PMC9826769 DOI: 10.1186/s40902-022-00368-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/23/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Silk sericin is an active ingredient in bone grafts. However, the optimal scaffold for silk sericin has yet to be identified. METHOD A critical-sized bone defect model in rat calvaria was used to evaluate bone regeneration. Silk sericin from Yeonnokjam, Bombyx mori, was incorporated into gelatin (group G, n = 6) and collagen (group C, n = 6). Bone regeneration was evaluated using micro-computed tomography (mCT) and histology. RESULTS Group C showed a larger bone volume than group G in the mCT analysis (P = 0.001). Histological analysis showed a larger area of bony defects in group G than in group C. The bone regeneration area in group C was significantly larger than that in group G (P = 0.003). CONCLUSION Compared with gelatin, collagen shows better bone regeneration in silk sericin-based bone grafts.
Collapse
Affiliation(s)
- Ji Hae Lee
- grid.420186.90000 0004 0636 2782Sericultural and Apicultural Division, National Institute of Agricultural Science, RDA, Wanju, 55365 Republic of Korea
| | - HaeYong Kweon
- grid.420186.90000 0004 0636 2782Sericultural and Apicultural Division, National Institute of Agricultural Science, RDA, Wanju, 55365 Republic of Korea
| | - Ji-Hyeon Oh
- grid.411733.30000 0004 0532 811XDepartment of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University, Gangneung, 28644 Republic of Korea
| | - Seong-Gon Kim
- grid.411733.30000 0004 0532 811XDepartment of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University, Gangneung, 28644 Republic of Korea
| |
Collapse
|
6
|
Guarnieri R, Reda R, Di Nardo D, Miccoli G, Zanza A, Testarelli L. In Vitro Direct and Indirect Cytotoxicity Comparative Analysis of One Pre-Hydrated versus One Dried Acellular Porcine Dermal Matrix. MATERIALS 2022; 15:ma15051937. [PMID: 35269168 PMCID: PMC8911924 DOI: 10.3390/ma15051937] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/29/2022] [Accepted: 03/04/2022] [Indexed: 02/04/2023]
Abstract
Aim: The aim of the present study was to compare the direct and indirect cytotoxicity of a porcine dried acellular dermal matrix (PDADM) versus a porcine hydrated acellular dermal matrix (PHADM) in vitro. Both are used for periodontal and peri-implant soft tissue regeneration. Materials and methods: Two standard direct cytotoxicity tests—namely, the Trypan exclusion method (TEM) and the reagent WST-1 test (4-3-[4-iodophenyl]-2-[4-nitrophenyl]-2H-[5-tetrazolio]-1,3-benzol-desulphonated)—were performed using human primary mesenchymal stem cells (HPMSCs) seeded directly onto a PDADM and PHADM after seven days. Two standard indirect cytotoxicity tests—namely, lactate dehydrogenase (LTT) and MTT (3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyl-2H-tetrazoliumbromide)—were performed using HPMSCs cultivated in eluates from the matrices incubated for 0.16 h (10 min), 1 h, and 24 h in a serum-free cell culture medium. Results: The WST and the TEM tests revealed significantly lower direct cytotoxicity values of HPMSCs on the PHADM compared with the PDADM. The indirect cytotoxicity levels were low for both the PHADM and PDADM, peaking in short-term eluates and decreasing with longer incubation times. However, they were lower for the PHADM with a statistically significant difference (p < 0.005). Conclusions: The results of the current study demonstrated a different biologic behavior between the PHADM and the PDADM, with the hydrated form showing a lower direct and indirect cytotoxicity.
Collapse
Affiliation(s)
- Renzo Guarnieri
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, 00161 Rome, Italy; (R.G.); (R.R.); (G.M.); (A.Z.); (L.T.)
- Private Periodontal Implant Practice, 31100 Treviso, Italy
| | - Rodolfo Reda
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, 00161 Rome, Italy; (R.G.); (R.R.); (G.M.); (A.Z.); (L.T.)
| | - Dario Di Nardo
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, 00161 Rome, Italy; (R.G.); (R.R.); (G.M.); (A.Z.); (L.T.)
- Correspondence:
| | - Gabriele Miccoli
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, 00161 Rome, Italy; (R.G.); (R.R.); (G.M.); (A.Z.); (L.T.)
| | - Alessio Zanza
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, 00161 Rome, Italy; (R.G.); (R.R.); (G.M.); (A.Z.); (L.T.)
| | - Luca Testarelli
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, 00161 Rome, Italy; (R.G.); (R.R.); (G.M.); (A.Z.); (L.T.)
| |
Collapse
|
7
|
Different angiogenic response and bone regeneration following the use of various types of collagen membranes - in vivo histomorphometric study in rabbit calvarial critical-size defects. SRP ARK CELOK LEK 2022. [DOI: 10.2298/sarh220402070s] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Introduction/Objective. Success of guided bone regeneration depends on the size and morphology of defect, characteristics of barrier membranes and adequate angiogenesis. The aim of the study was to reveal impact of three different collagen membranes on angiogenesis and bone production in critical-size defects. Methods. Defects were created in rabbit calvarias, filled with bovine bone graft and randomly covered with one of three investigated collagen membranes (Biogide ? BG, Heart ? PC, Mucograft ? MG) or left without a membrane for the control group (C). After two and four weeks of healing, a total of 10 animals were sacrificed for histological and histomorphometric analysis of angiogenesis, bone regeneration, and inflammatory response. Results. In the early healing phase, the highest values of trabecular thickness and trabecular area were recorded with PC and BG membranes, respectively. After four weeks, significantly improved bone healing was noted in the MG group, as well as significantly pronounced inflammation. Initially, vessel density was significantly higher in the C group compared to all three membranes. After four weeks, significantly better results were observed in the MG compared to the other groups, BG compared to the rest of groups, and between PC and C groups. Conclusion. The use of collagen membranes significantly affects angiogenesis, reducing it in the early and enhancing it at the later healing phase. All three tested membranes in combination with bone graft significantly improved the amount of regenerated bone. Among the investigated groups, MG favored more pronounced angiogenic, osteogenic, and inflammatory response in the observation period of four weeks.
Collapse
|
8
|
Stem Cells and Their Derivatives-Implications for Alveolar Bone Regeneration: A Comprehensive Review. Int J Mol Sci 2021; 22:ijms222111746. [PMID: 34769175 PMCID: PMC8583713 DOI: 10.3390/ijms222111746] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023] Open
Abstract
Oral and craniofacial bone defects caused by congenital disease or trauma are widespread. In the case of severe alveolar bone defect, autologous bone grafting has been considered a “gold standard”; however, the procedure has several disadvantages, including limited supply, resorption, donor site morbidity, deformity, infection, and bone graft rejection. In the last few decades, bone tissue engineering combined with stem cell-based therapy may represent a possible alternative to current bone augmentation techniques. The number of studies investigating different cell-based bone tissue engineering methods to reconstruct alveolar bone damage is rapidly rising. As an interdisciplinary field, bone tissue engineering combines the use of osteogenic cells (stem cells/progenitor cells), bioactive molecules, and biocompatible scaffolds, whereas stem cells play a pivotal role. Therefore, our work highlights the osteogenic potential of various dental tissue-derived stem cells and induced pluripotent stem cells (iPSCs), the progress in differentiation techniques of iPSCs into osteoprogenitor cells, and the efforts that have been made to fabricate the most suitable and biocompatible scaffold material with osteoinductive properties for successful bone graft generation. Moreover, we discuss the application of stem cell-derived exosomes as a compelling new form of “stem-cell free” therapy.
Collapse
|