1
|
Chen YY, Huang JC, Wu CY, Yu SQ, Wang YT, Ye C, Shi TQ, Huang H. A comprehensive review on the recent advances for 5-aminolevulinic acid production by the engineered bacteria. Crit Rev Biotechnol 2025; 45:148-163. [PMID: 38705840 DOI: 10.1080/07388551.2024.2336532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/10/2024] [Accepted: 03/13/2024] [Indexed: 05/07/2024]
Abstract
5-Aminolevulinic acid (5-ALA) is a non-proteinogenic amino acid essential for synthesizing tetrapyrrole compounds, including heme, chlorophyll, cytochrome, and vitamin B12. As a plant growth regulator, 5-ALA is extensively used in agriculture to enhance crop yield and quality. The complexity and low yield of chemical synthesis methods have led to significant interest in the microbial synthesis of 5-ALA. Advanced strategies, including the: enhancement of precursor and cofactor supply, compartmentalization of key enzymes, product transporters engineering, by-product formation reduction, and biosensor-based dynamic regulation, have been implemented in bacteria for 5-ALA production, significantly advancing its industrialization. This article offers a comprehensive review of recent developments in 5-ALA production using engineered bacteria and presents new insights to propel the field forward.
Collapse
Affiliation(s)
- Ying-Ying Chen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Jia-Cong Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Cai-Yun Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Shi-Qin Yu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| | - Yue-Tong Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| |
Collapse
|
2
|
Zhan Z, Chen X, Ye Z, Zhao M, Li C, Gao S, Sinskey AJ, Yao L, Dai J, Jiang Y, Zheng X. Expanding the CRISPR Toolbox for Engineering Lycopene Biosynthesis in Corynebacterium glutamicum. Microorganisms 2024; 12:803. [PMID: 38674747 PMCID: PMC11052027 DOI: 10.3390/microorganisms12040803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Lycopene represents one of the central compounds in the carotenoid pathway and it exhibits a potent antioxidant ability with wide potential applications in medicine, food, and cosmetics. The microbial production of lycopene has received increasing concern in recent years. Corynebacterium glutamicum (C. glutamicum) is considered to be a safe and beneficial industrial production platform, naturally endowed with the ability to produce lycopene. However, the scarcity of efficient genetic tools and the challenge of identifying crucial metabolic genes impede further research on C. glutamicum for achieving high-yield lycopene production. To address these challenges, a novel genetic editing toolkit, CRISPR/MAD7 system, was established and developed. By optimizing the promoter, ORI and PAM sequences, the CRISPR/MAD7 system facilitated highly efficient gene deletion and exhibited a broad spectrum of PAM sites. Notably, 25 kb of DNA from the genome was successfully deleted. In addition, the CRISPR/MAD7 system was effectively utilized in the metabolic engineering of C. glutamicum, allowing for the simultaneous knockout of crtEb and crtR genes in one step to enhance the accumulation of lycopene by blocking the branching pathway. Through screening crucial genes such as crtE, crtB, crtI, idsA, idi, and cg0722, an optimal carotenogenic gene combination was obtained. Particularly, cg0722, a membrane protein gene, was found to play a vital role in lycopene production. Therefore, the CBIEbR strain was obtained by overexpressing cg0722, crtB, and crtI while strategically blocking the by-products of the lycopene pathway. As a result, the final engineered strain produced lycopene at 405.02 mg/L (9.52 mg/g dry cell weight, DCW) in fed-batch fermentation, representing the highest reported lycopene yield in C. glutamicum to date. In this study, a powerful and precise genetic tool was used to engineer C. glutamicum for lycopene production. Through the modifications between the host cell and the carotenogenic pathway, the lycopene yield was stepwise improved by 102-fold as compared to the starting strain. This study highlights the usefulness of the CRISPR/MAD7 toolbox, demonstrating its practical applications in the metabolic engineering of industrially robust C. glutamicum.
Collapse
Affiliation(s)
- Zhimin Zhan
- Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; (Z.Z.); (X.C.); (Z.Y.); (L.Y.); (J.D.); (Y.J.)
| | - Xiong Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; (Z.Z.); (X.C.); (Z.Y.); (L.Y.); (J.D.); (Y.J.)
| | - Zhifang Ye
- Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; (Z.Z.); (X.C.); (Z.Y.); (L.Y.); (J.D.); (Y.J.)
| | - Ming Zhao
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS 66047, USA;
| | - Cheng Li
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (C.L.); (A.J.S.)
| | - Shipeng Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Anthony J. Sinskey
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (C.L.); (A.J.S.)
| | - Lan Yao
- Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; (Z.Z.); (X.C.); (Z.Y.); (L.Y.); (J.D.); (Y.J.)
| | - Jun Dai
- Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; (Z.Z.); (X.C.); (Z.Y.); (L.Y.); (J.D.); (Y.J.)
| | - Yiming Jiang
- Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; (Z.Z.); (X.C.); (Z.Y.); (L.Y.); (J.D.); (Y.J.)
| | - Xueyun Zheng
- Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; (Z.Z.); (X.C.); (Z.Y.); (L.Y.); (J.D.); (Y.J.)
| |
Collapse
|
3
|
Ji G, Jin X, Shi F. Metabolic engineering Corynebacterium glutamicum for D-chiro-inositol production. World J Microbiol Biotechnol 2024; 40:154. [PMID: 38568465 DOI: 10.1007/s11274-024-03969-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
D-chiro-inositol (DCI) is a potential drug for the treatment of type II diabetes and polycystic ovary syndrome. In order to effectively synthesize DCI in Corynebacterium glutamicum, the genes related to inositol catabolism in clusters iol1 and iol2 were knocked out in C. glutamicum SN01 to generate the chassis strain DCI-1. DCI-1 did not grow in and catabolize myo-inositol (MI). Subsequently, different exogenous and endogenous inosose isomerases were expressed in DCI-1 and their conversion ability of DCI from MI were compared. After fermentation, the strain DCI-7 co-expressing inosose isomerase IolI2 and inositol dehydrogenase IolG was identified as the optimal strain. Its DCI titer reached 3.21 g/L in the presence of 20 g/L MI. On this basis, the pH, temperature and MI concentration during whole-cell conversion of DCI by strain DCI-7 were optimized. Finally, the optimal condition that achieved the highest DCI titer of 6.96 g/L were obtained at pH 8.0, 37 °C and addition of 40 g/L MI. To our knowledge, it is the highest DCI titer ever reported.
Collapse
Affiliation(s)
- Guohui Ji
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
| | - Xia Jin
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
| | - Feng Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|