1
|
Zhang M, Mi M, Hu Z, Li L, Chen Z, Gao X, Liu D, Xu B, Liu Y. Polydopamine-Based Biomaterials in Orthopedic Therapeutics: Properties, Applications, and Future Perspectives. Drug Des Devel Ther 2024; 18:3765-3790. [PMID: 39219693 PMCID: PMC11363944 DOI: 10.2147/dddt.s473007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
Polydopamine is a versatile and modifiable polymer, known for its excellent biocompatibility and adhesiveness. It can also be engineered into a variety of nanoparticles and biomaterials for drug delivery, functional modification, making it an excellent choice to enhance the prevention and treatment of orthopedic diseases. Currently, the application of polydopamine biomaterials in orthopedic disease prevention and treatment is in its early stages, despite some initial achievements. This article aims to review these applications to encourage further development of polydopamine for orthopedic therapeutic needs. We detail the properties of polydopamine and its biomaterial types, highlighting its superior performance in functional modification on nanoparticles and materials. Additionally, we also explore the challenges and future prospects in developing optimal polydopamine biomaterials for clinical use in orthopedic disease prevention and treatment.
Collapse
Affiliation(s)
- Min Zhang
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, 524037, People’s Republic of China
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Man Mi
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, 524037, People’s Republic of China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Zilong Hu
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Lixian Li
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Zhiping Chen
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, 524037, People’s Republic of China
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Xiang Gao
- Stem Cell Research and Cellular Therapy Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, People’s Republic of China
| | - Di Liu
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Bilian Xu
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Yanzhi Liu
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, 524037, People’s Republic of China
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| |
Collapse
|
2
|
Zeng J, Gu C, Zeng F, Xie Y. 2D silicene nanosheets-loaded coating for combating implant-associated infection. Int J Biol Macromol 2023; 253:127585. [PMID: 37866572 DOI: 10.1016/j.ijbiomac.2023.127585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/01/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
Implant-associated infection (IAI) is an unsolved problem in orthopaedics. Current therapies, including antibiotics and surgical debridement, can lead severe clinical and financial burdens on patients. Therefore, there is an urgent need to reinforce the inherent antibacterial properties of implants. Recently, two-dimensional (2D) silicene nanosheets (SNs) have gained increasing attention in biomedical fields owing to their considerable biocompatibility, biodegradability and strong photothermal-conversion performance. Herein, a dual-functional photosensitive coating on a Ti substrate (denoted as TPSNs) was rationally fabricated for bacterial inhibition and osteogenesis promotion. For the first time, SNs were loaded onto the surface of implants. Hyperthermia generated by the SNs and polydopamine (PDA) coating under 808 nm laser irradiation achieved the in vitro anti-bacterial efficiency of 90.7 ± 2.4 % for S. aureus and 88.0 ± 5.8 % for E. coli, respectively. In addition, TPSNs exhibited promising biocompatibility for the promotion of BMSC (bone marrow mesenchymal stem cells) proliferation and spreading. The presence of silicon (Si) in TPSNs contributed to the improved osteogenic differentiation of BMSCs, elevating the expressions of RUNX2 and OCN. In animal experiments, the combination of TPSNs with photothermal therapy (PTT) achieved an anti-bacterial efficiency of 89.2 % ± 1.6 % against S. aureus. Furthermore, TPSNs significantly improved bone-implant osseointegration in vivo. Overall, the development of a dual-functional TPSNs coating provides a new strategy for combating IAI.
Collapse
Affiliation(s)
- Junkai Zeng
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Changjiang Gu
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Feihui Zeng
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Youzhuan Xie
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Meng M, Wang J, Huang H, Liu X, Zhang J, Li Z. 3D printing metal implants in orthopedic surgery: Methods, applications and future prospects. J Orthop Translat 2023; 42:94-112. [PMID: 37675040 PMCID: PMC10480061 DOI: 10.1016/j.jot.2023.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 09/08/2023] Open
Abstract
Background Currently, metal implants are widely used in orthopedic surgeries, including fracture fixation, spinal fusion, joint replacement, and bone tumor defect repair. However, conventional implants are difficult to be customized according to the recipient's skeletal anatomy and defect characteristics, leading to difficulties in meeting the individual needs of patients. Additive manufacturing (AM) or three-dimensional (3D) printing technology, an advanced digital fabrication technique capable of producing components with complex and precise structures, offers opportunities for personalization. Methods We systematically reviewed the literature on 3D printing orthopedic metal implants over the past 10 years. Relevant animal, cellular, and clinical studies were searched in PubMed and Web of Science. In this paper, we introduce the 3D printing method and the characteristics of biometals and summarize the properties of 3D printing metal implants and their clinical applications in orthopedic surgery. On this basis, we discuss potential possibilities for further generalization and improvement. Results 3D printing technology has facilitated the use of metal implants in different orthopedic procedures. By combining medical images from techniques such as CT and MRI, 3D printing technology allows the precise fabrication of complex metal implants based on the anatomy of the injured tissue. Such patient-specific implants not only reduce excessive mechanical strength and eliminate stress-shielding effects, but also improve biocompatibility and functionality, increase cell and nutrient permeability, and promote angiogenesis and bone growth. In addition, 3D printing technology has the advantages of low cost, fast manufacturing cycles, and high reproducibility, which can shorten patients' surgery and hospitalization time. Many clinical trials have been conducted using customized implants. However, the use of modeling software, the operation of printing equipment, the high demand for metal implant materials, and the lack of guidance from relevant laws and regulations have limited its further application. Conclusions There are advantages of 3D printing metal implants in orthopedic applications such as personalization, promotion of osseointegration, short production cycle, and high material utilization. With the continuous learning of modeling software by surgeons, the improvement of 3D printing technology, the development of metal materials that better meet clinical needs, and the improvement of laws and regulations, 3D printing metal implants can be applied to more orthopedic surgeries. The translational potential of this paper Precision, intelligence, and personalization are the future direction of orthopedics. It is reasonable to believe that 3D printing technology will be more deeply integrated with artificial intelligence, 4D printing, and big data to play a greater role in orthopedic metal implants and eventually become an important part of the digital economy. We aim to summarize the latest developments in 3D printing metal implants for engineers and surgeons to design implants that more closely mimic the morphology and function of native bone.
Collapse
Affiliation(s)
- Meng Meng
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, PR China
| | - Jinzuo Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, PR China
| | - Huagui Huang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, PR China
| | - Xin Liu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, PR China
| | - Jing Zhang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, PR China
| | - Zhonghai Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, PR China
| |
Collapse
|
4
|
Sha Q, Wang Y, Zhu Z, Wang H, Qiu H, Niu W, Li X, Qian J. A hyaluronic acid/silk fibroin/poly-dopamine-coated biomimetic hydrogel scaffold with incorporated neurotrophin-3 for spinal cord injury repair. Acta Biomater 2023:S1742-7061(23)00309-4. [PMID: 37257575 DOI: 10.1016/j.actbio.2023.05.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/08/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
Bio-factor stimulation is essential for axonal regeneration in the central nervous system. Thus, persistent and efficient factor delivery in the local microenvironment is an ideal strategy for spinal cord injury repair. We developed a biomimetic hydrogel scaffold to load biofactors in situ and release them in a controlled way as a promising therapeutic modality. Hyaluronic acid and silk fibroin were cross-linked as the basement of the scaffolds, and poly-dopamine coating was used to further increase the loading of factors and endow the hydrogel scaffolds with ideal physical and chemical properties and proper biocompatibility. Notably, neurotrophin-3 release from the hydrogel scaffolds was prolonged to 28 days. A spinal cord injury model was constructed for hydrogel scaffold transplantation. After eight weeks, significant NF200-positive nerve fibers were observed extending across the glial scar to the center of the injured area. Due to the release of neurotrophin-3, spinal cord regeneration was enhanced, and the cavity area of the injury graft site and inflammation associated with CD68 positive cells were reduced, which led to a significant improvement in hind limb motor function. The results show that the hyaluronic acid/silk fibroin/poly-dopamine-coated biomimetic hydrogel scaffold achieved locally slow release of neurotrophin-3, thus facilitating the regeneration of injured spinal cord. STATEMENT OF SIGNIFICANCE: Hydrogels have received great attention in spinal cord regeneration. Current research has focused on more efficient and controlled release of bio-factors. Here, we adopted a mussel-inspired strategy to functionalize the hyaluronic acid/silk fibroin hydrogel scaffold to increase the load of neurotrophin-3 and extend the release time. The hydrogel scaffolds have ideal physiochemical properties, proper release rate, and biocompatibility. Owing to the continuous neurotrophin-3 release from implanted scaffolds, cavity formation is reduced, inflammation alleviated, and spinal cord regeneration enhanced, indicating great potential for bio-factor delivery in soft tissue regeneration applications.
Collapse
Affiliation(s)
- Qi Sha
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China
| | - Yankai Wang
- Stomatologic Hospital and College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui 230032, China
| | - Zhi Zhu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China
| | - Hu Wang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China
| | - Hua Qiu
- Stomatologic Hospital and College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui 230032, China
| | - Weirui Niu
- Stomatologic Hospital and College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui 230032, China
| | - Xiangyang Li
- Stomatologic Hospital and College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui 230032, China.
| | - Jun Qian
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China.
| |
Collapse
|
5
|
Zeng J, Gu C, Geng X, Lin K, Xie Y, Chen X. Combined photothermal and sonodynamic therapy using a 2D black phosphorus nanosheets loaded coating for efficient bacterial inhibition and bone-implant integration. Biomaterials 2023; 297:122122. [PMID: 37080119 DOI: 10.1016/j.biomaterials.2023.122122] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 03/29/2023] [Accepted: 04/08/2023] [Indexed: 04/22/2023]
Abstract
Surgical site infection (SSI) remains a major threat for implant failure in orthopedics. Herein, we report a dual-functional coating on Ti implants (named Ti/PDA/BP) with the integration of two-dimensional (2D) photo-sono sensitive black phosphorus nanosheets (BPNSs) and polydopamine (PDA) for efficient bacterial inhibition and bone-implant integration. For the first time, we employ BPNSs as generators of reactive radicals (ROS) under ultrasound (US) stimuli for implant associated infection. Additionally, the application of PDA improves the stability of BPNSs, the biocompatibility and photothermal performance of this hybrid coating. The as-prepared Ti/PDA/BP coating exhibits superior biocompatibility, bioactivity, photothermal and sonodynamic conversion abilities. Owing to the synergistic effect of hyperthermia and ·OH, Ti/PDA/BP damages the membrane and antioxidant system of Staphylococcus aureus, reaching a high antibacterial activity of 96.6% in vitro and 97.3% in vivo with rapid 10 min NIR irradiation and 20 min US treatment. In addition, we firstly unveil the significant effect of Ti/PDA/BP-based sonodynamic therapy (SDT) on bacterial membrane and oxidative stress at the transcriptome level. Moreover, the Ti/PDA/BP coating remarkably promotes osteogenesis in vitro and bone-implant osseointegration in vivo. Overall, development of Ti/PDA/BP bioactive coating provides a new strategy for combating the implant associated infection.
Collapse
Affiliation(s)
- Junkai Zeng
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, PR China
| | - Changjiang Gu
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, PR China
| | - Xiangwu Geng
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, PR China
| | - Kaili Lin
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, PR China.
| | - Youzhuan Xie
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Xiongsheng Chen
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, PR China; Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
6
|
Fei F, Yao H, Wang Y, Wei J. Graphene Oxide/RhPTH(1-34)/Polylactide Composite Nanofibrous Scaffold for Bone Tissue Engineering. Int J Mol Sci 2023; 24:ijms24065799. [PMID: 36982876 PMCID: PMC10058038 DOI: 10.3390/ijms24065799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/26/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Polylactide (PLA) is one of the most promising polymers that has been widely used for the repair of damaged tissues due to its biocompatibility and biodegradability. PLA composites with multiple properties, such as mechanical properties and osteogenesis, have been widely investigated. Herein, PLA/graphene oxide (GO)/parathyroid hormone (rhPTH(1-34)) nanofiber membranes were prepared using a solution electrospinning method. The tensile strength of the PLA/GO/rhPTH(1-34) membranes was 2.64 MPa, nearly 110% higher than that of a pure PLA sample (1.26 MPa). The biocompatibility and osteogenic differentiation test demonstrated that the addition of GO did not markedly affect the biocompatibility of PLA, and the alkaline phosphatase activity of PLA/GO/rhPTH(1-34) membranes was about 2.3-times that of PLA. These results imply that the PLA/GO/rhPTH(1-34) composite membrane may be a candidate material for bone tissue engineering.
Collapse
Affiliation(s)
- Fan Fei
- School of Stomatology, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
| | - Haiyan Yao
- School of Stomatology, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Yujiang Wang
- School of Stomatology, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Disease, Nanchang 330006, China
| | - Junchao Wei
- School of Stomatology, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
- Jiangxi Province Clinical Research Center for Oral Disease, Nanchang 330006, China
| |
Collapse
|
7
|
Wu H, Zhao C, Lin K, Wang X. Mussel-Inspired Polydopamine-Based Multilayered Coatings for Enhanced Bone Formation. Front Bioeng Biotechnol 2022; 10:952500. [PMID: 35875492 PMCID: PMC9301208 DOI: 10.3389/fbioe.2022.952500] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/17/2022] [Indexed: 12/03/2022] Open
Abstract
Repairing bone defects remains a challenge in clinical practice and the application of artificial scaffolds can enhance local bone formation, but the function of unmodified scaffolds is limited. Considering different application scenarios, the scaffolds should be multifunctionalized to meet specific demands. Inspired by the superior adhesive property of mussels, polydopamine (PDA) has attracted extensive attention due to its universal capacity to assemble on all biomaterials and promote further adsorption of multiple external components to form PDA-based multilayered coatings with multifunctional property, which can induce synergistic enhancement of new bone formation, such as immunomodulation, angiogenesis, antibiosis and antitumor property. This review will summarize mussel-inspired PDA-based multilayered coatings for enhanced bone formation, including formation mechanism and biofunction of PDA coating, as well as different functional components. The synergistic enhancement of multiple functions for better bone formation will also be discussed. This review will inspire the design and fabrication of PDA-based multilayered coatings for different application scenarios and promote deeper understanding of their effect on bone formation, but more efforts should be made to achieve clinical translation. On this basis, we present a critical conclusion, and forecast the prospects of PDA-based multilayered coatings for bone regeneration.
Collapse
Affiliation(s)
| | | | - Kaili Lin
- *Correspondence: Kaili Lin, ; Xudong Wang,
| | | |
Collapse
|
8
|
Fu Z, Zhuang Y, Cui J, Sheng R, Tomás H, Rodrigues J, Zhao B, Wang X, Lin K. Development and challenges of cells- and materials-based tooth regeneration. ENGINEERED REGENERATION 2022; 3:163-181. [DOI: 10.1016/j.engreg.2022.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|