1
|
Kang C, Wang J, Li R, Gong J, Wang K, Wang Y, Wang Z, He R, Li F. Smart Targeted Delivery Systems for Enhancing Antitumor Therapy of Active Ingredients in Traditional Chinese Medicine. Molecules 2023; 28:5955. [PMID: 37630208 PMCID: PMC10459615 DOI: 10.3390/molecules28165955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
As a therapeutic tool inherited for thousands of years, traditional Chinese medicine (TCM) exhibits superiority in tumor therapy. The antitumor active components of TCM not only have multi-target treatment modes but can also synergistically interfere with tumor growth compared to traditional chemotherapeutics. However, most antitumor active components of TCM have the characteristics of poor solubility, high toxicity, and side effects, which are often limited in clinical application. In recent years, delivering the antitumor active components of TCM by nanosystems has been a promising field. The advantages of nano-delivery systems include improved water solubility, targeting efficiency, enhanced stability in vivo, and controlled release drugs, which can achieve higher drug-delivery efficiency and bioavailability. According to the method of drug loading on nanocarriers, nano-delivery systems can be categorized into two types, including physically encapsulated nanoplatforms and chemically coupled drug-delivery platforms. In this review, two nano-delivery approaches are considered, namely physical encapsulation and chemical coupling, both commonly used to deliver antitumor active components of TCM, and we summarized the advantages and limitations of different types of nano-delivery systems. Meanwhile, the clinical applications and potential toxicity of nano-delivery systems and the future development and challenges of these nano-delivery systems are also discussed, aiming to lay the foundation for the development and practical application of nano-delivery systems of TCM in clinical settings.
Collapse
Affiliation(s)
- Chenglong Kang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (C.K.)
| | - Jianwen Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (C.K.)
| | - Ruotong Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (C.K.)
| | - Jianing Gong
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (C.K.)
| | - Kuanrong Wang
- School of Management, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuxin Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (C.K.)
| | - Zhenghua Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ruzhe He
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Fengyun Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (C.K.)
| |
Collapse
|
2
|
Wang C, Yang X, Qiu H, Huang K, Xu Q, Zhou B, Zhang L, Zhou M, Yi X. A co-delivery system based on chlorin e6-loaded ROS-sensitive polymeric prodrug with self-amplified drug release to enhance the efficacy of combination therapy for breast tumor cells. Front Bioeng Biotechnol 2023; 11:1168192. [PMID: 37064246 PMCID: PMC10090272 DOI: 10.3389/fbioe.2023.1168192] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
Background: Recently, various combination therapies for tumors have garnered popularity because of their synergistic effects in improving therapeutic efficacy and reducing side effects. However, incomplete intracellular drug release and a single method of combining drugs are inadequate to achieve the desired therapeutic effect.Methods: A reactive oxygen species (ROS)-sensitive co-delivery micelle (Ce6@PTP/DP). It was a photosensitizer and a ROS-sensitive paclitaxel (PTX) prodrug for synergistic chemo-photodynamic therapy. Micelles size and surface potential were measured. In vitro drug release, cytotoxicity and apoptosis were investigated.Results: Ce6@PTP/DP prodrug micelles exhibited good colloidal stability and biocompatibility, high PTX and Ce6 loading contents of 21.7% and 7.38%, respectively. Upon light irradiation, Ce6@PTP/DP micelles endocytosed by tumor cells can generate sufficient ROS, not only leading to photodynamic therapy and the inhibition of tumor cell proliferation, but also triggering locoregional PTX release by cleaving the thioketal (TK) bridged bond between PTX and methoxyl poly (ethylene glycol). Furthermore, compared with single drug-loaded micelles, the light-triggered Ce6@PTP/DP micelles exhibited self-amplified drug release and significantly greater inhibition of HeLa cell growth.Conclusion: The results support that PTX and Ce6 in Ce6@PTP/DP micelles exhibited synergistic effects on cell-growth inhibition. Thus, Ce6@PTP/DP micelles represent an alternative for realizing synergistic chemo-photodynamic therapy.
Collapse
Affiliation(s)
- Cui Wang
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Xiaoqing Yang
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Haibao Qiu
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Kexin Huang
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Qin Xu
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Bin Zhou
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Lulu Zhang
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Man Zhou
- College of Pharmacy, Gannan Medical University, Ganzhou, China
- *Correspondence: Man Zhou, ; Xiaoqing Yi,
| | - Xiaoqing Yi
- College of Pharmacy, Gannan Medical University, Ganzhou, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Gannan Medical University, Ganzhou, China
- *Correspondence: Man Zhou, ; Xiaoqing Yi,
| |
Collapse
|
3
|
Hu J, Tan X, Wang D, Li Y, Liang H, Peng J, Li F, Zhou Q, Geng P, Wang S, Yu Y, Liu J. Retraction Note to: A stepwise-targeting strategy for the treatment of cerebral ischemic stroke. J Nanobiotechnology 2022; 20:443. [PMID: 36224657 PMCID: PMC9554990 DOI: 10.1186/s12951-022-01645-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Jingbo Hu
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China.
| | - Xueying Tan
- College of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, 315100, China
| | - Dongwei Wang
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Yixuan Li
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Hongze Liang
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Jiejun Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo, 315211, Zhejiang, China.
| | - Fengyan Li
- College of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, 315100, China
| | - Quan Zhou
- Department of Neurosurgery, The People's Hospital of Lishui, The Sixth Affliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Peiwu Geng
- Department of Neurosurgery, The People's Hospital of Lishui, The Sixth Affliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Shuanghu Wang
- Department of Neurosurgery, The People's Hospital of Lishui, The Sixth Affliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Yue Yu
- Department of Pharmacy, Ningbo Women and Children's Hospital, Ningbo, 315012, China
| | - Jin Liu
- Department of Neurosurgery, The People's Hospital of Lishui, The Sixth Affliated Hospital of Wenzhou Medical University, Lishui, 323000, China.
| |
Collapse
|
4
|
Multifunctional Plant Virus Nanoparticles for Targeting Breast Cancer Tumors. Vaccines (Basel) 2022; 10:vaccines10091431. [PMID: 36146510 PMCID: PMC9502313 DOI: 10.3390/vaccines10091431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Breast cancer treatment using plant-virus-based nanoparticles (PVNPs) has achieved considerable success in preclinical studies. PVNP-based breast cancer therapies include non-targeted and targeted nanoplatforms for delivery of anticancer therapeutic chemo and immune agents and cancer vaccines for activation of local and systemic antitumor immunity. Interestingly, PVNP platforms combined with other tumor immunotherapeutic options and other modalities of oncotherapy can improve tumor efficacy treatment. These applications can be achieved by encapsulation of a wide range of active ingredients and conjugating ligands for targeting immune and tumor cells. This review presents the current breast cancer treatments based on PVNP platforms.
Collapse
|
5
|
Zhou M, Wen L, Wang C, Lei Q, Li Y, Yi X. Recent Advances in Stimuli-Sensitive Amphiphilic Polymer-Paclitaxel Prodrugs. Front Bioeng Biotechnol 2022; 10:875034. [PMID: 35464718 PMCID: PMC9019707 DOI: 10.3389/fbioe.2022.875034] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Paclitaxel (PTX) is a broad-spectrum chemotherapy drug employed in the treatment of a variety of tumors. However, the clinical applications of PTX are limited by its poor water solubility. Adjuvants are widely used to overcome this issue. However, these adjuvants often have side effects and poor biodistribution. The smart drug delivery system is a promising strategy for the improvement of solubility, permeability, and stability of drugs, and can promote sustained controlled release, increasing therapeutic efficacy and reducing side effects. Polymeric prodrugs show great advantages for drug delivery due to their high drug loading and stability. There has been some groundbreaking work in the development of PTX-based stimulus-sensitive polymeric prodrug micelles, which is summarized in this study. We consider these in terms of the four main types of stimulus (pH, reduction, enzyme, and reactive oxygen species (ROS)). The design, synthesis, and biomedical applications of stimulus-responsive polymeric prodrugs of PTX are reviewed, and the current research results and future directions of the field are summarized.
Collapse
Affiliation(s)
- Man Zhou
- College of Chemistry, Nanchang University, Nanchang, China
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Lijuan Wen
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Cui Wang
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Qiao Lei
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- *Correspondence: Qiao Lei, ; Yongxiu Li, ; Xiaoqing Yi,
| | - Yongxiu Li
- College of Chemistry, Nanchang University, Nanchang, China
- *Correspondence: Qiao Lei, ; Yongxiu Li, ; Xiaoqing Yi,
| | - Xiaoqing Yi
- College of Pharmacy, Gannan Medical University, Ganzhou, China
- *Correspondence: Qiao Lei, ; Yongxiu Li, ; Xiaoqing Yi,
| |
Collapse
|