1
|
Hemmati S. Expanding the cryoprotectant toolbox in biomedicine by multifunctional antifreeze peptides. Biotechnol Adv 2025; 81:108545. [PMID: 40023203 DOI: 10.1016/j.biotechadv.2025.108545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/07/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
The global cryopreservation market size rises exponentially due to increased demand for cell therapy-based products, assisted reproductive technology, and organ transplantation. Cryoprotectants (CPAs) are required to reduce ice-related damage, osmotic cell injury, and protein denaturation. Antioxidants are needed to hamper membrane lipid peroxidation under freezing stress, and antibiotics are added to the cryo-solutions to prevent contamination. The vitrification process for sized organs requires a high concentration of CPA, which is hardly achievable using conventional penetrating toxic CPAs like DMSO. Antifreeze peptides (AFpeps) are biocompatible CPAs leveraging inspiration from nature, such as freeze-tolerant and freeze-avoidant organisms, to circumvent logistic limitations in cryogenic conditions. This study aims to introduce the advances of AFpeps with cell-penetrating, antioxidant, and antimicrobial characteristics. We herein revisit the placement of AFpeps in the biobanking of cancer cells, immune cells, stem cells, blood cells, germ cells (sperms and oocytes), and probiotics. Implementing low-immunogenic AFpeps for allograft cryopreservation minimizes HLA mismatching risk after organ transplantation. Applying AFpeps to formulate bioinks with optimal rheology in extrusion-based 3D cryobiopriners expedites the bench-to-beside transition of bioprinted scaffolds. This study advocates that the fine-tuned synthetic or insect-derived AFpeps, forming round blunt-shape crystals, are biomedically broad-spectrum, and cell-permeable AFpeps from marine and plant sources, which result in sharp ice crystals, are appropriate for cryosurgery. Perspectives of the available room for developing peptide mimetics in favor of higher activity and stability and peptide-functionalized nanoparticles for enhanced delivery are delineated. Finally, antitumor immune activation by cryoimmunotherapy as an autologous in-vivo tumor lysate vaccine has been illustrated.
Collapse
Affiliation(s)
- Shiva Hemmati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, 56000 Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
2
|
Guo L, Li X, Chen S, Li Y, Wang W, Luo S, Jiang L, Liu H, Pan X, Zong Y, Feng L, Liu F, Zhang L, Bi G, Yang G. Mechanisms underlining Kelp (Saccharina japonica) adaptation to relative high seawater temperature. BMC Genomics 2025; 26:186. [PMID: 39994530 PMCID: PMC11849318 DOI: 10.1186/s12864-025-11382-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/19/2025] [Indexed: 02/26/2025] Open
Abstract
Saccharina japonica has been cultivated in China for almost a century. From Dalian to Fujian, the lowest and the highest seawater temperatures in the period of cultivation increased by 14℃ and 8℃, respectively. Its adaptation to elevated seawater temperature is an example of securing the natural habitats of a species. To decipher the mechanisms underlining S. japonica adaptation to relative high seawater temperature, we assembled ~ 516.3 Mb female gametophyte genome and ~ 540.3 Mb of the male, respectively. The gametophytes isolated from southern China kelp cultivars acclimated to the relative high seawater temperature by transforming amino acids, glycosylating protein, maintaining osmotic pressure, intensifying the innate immune system, and exhausting energy and reduction power through the PEP-pyruvate-oxaloacetate node and the iodine cycle. They adapted to the relative high seawater temperature by transforming amino acids, changing sugar metabolism and intensifying innate immune system. The sex of S. japonica was determined by HMG-sex, and around this male gametophyte determiner the stress tolerant genes become linked to or associated with.
Collapse
Affiliation(s)
- Li Guo
- College of Marine Life Sciences, Ocean University of China (OUC), Qingdao, 266003, P. R. China
| | - Xiaojie Li
- Shandong Technology Innovation Center of Algae and Sea Cucumber, Shandong Oriental Ocean Sci-Tech Co., Ltd, Yantai, 264003, Shandong, P. R. China
| | - Shuxiu Chen
- Provincial Key Laboratory of Marine Seed Industry of Shandong, Shandong Oriental Ocean Sci-Tech Co., Ltd, Yantai, 264003, Shandong, P. R. China
| | - Yan Li
- Shandong Technology Innovation Center of Algae and Sea Cucumber, Shandong Oriental Ocean Sci-Tech Co., Ltd, Yantai, 264003, Shandong, P. R. China
| | - Weiwei Wang
- Provincial Key Laboratory of Marine Seed Industry of Shandong, Shandong Oriental Ocean Sci-Tech Co., Ltd, Yantai, 264003, Shandong, P. R. China
| | - Shiju Luo
- Shandong Technology Innovation Center of Algae and Sea Cucumber, Shandong Oriental Ocean Sci-Tech Co., Ltd, Yantai, 264003, Shandong, P. R. China
| | - Liming Jiang
- Shandong Technology Innovation Center of Algae and Sea Cucumber, Shandong Oriental Ocean Sci-Tech Co., Ltd, Yantai, 264003, Shandong, P. R. China
- Yantai Marine Economic Research Institute, Yantai, 264006, Shandong, P. R. China
| | - Hang Liu
- College of Marine Life Sciences, Ocean University of China (OUC), Qingdao, 266003, P. R. China
| | - Xiaohui Pan
- College of Marine Life Sciences, Ocean University of China (OUC), Qingdao, 266003, P. R. China
| | - Yanan Zong
- College of Marine Life Sciences, Ocean University of China (OUC), Qingdao, 266003, P. R. China
| | - Leili Feng
- College of Marine Life Sciences, Ocean University of China (OUC), Qingdao, 266003, P. R. China
| | - Fuli Liu
- College of Marine Life Sciences, Ocean University of China (OUC), Qingdao, 266003, P. R. China
- Key Laboratory of Marine Genetics and Breeding of Ministry of Education, OUC, Qingdao, 266003, P. R. China
| | - Linan Zhang
- School of Marine Science and Engineering, Qingdao Agriculture University, Qingdao, 266109, P. R. China
| | - Guiqi Bi
- Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, P. R. China
| | - Guanpin Yang
- College of Marine Life Sciences, Ocean University of China (OUC), Qingdao, 266003, P. R. China.
- Key Laboratory of Marine Genetics and Breeding of Ministry of Education, OUC, Qingdao, 266003, P. R. China.
- Provincial Key Laboratory of Marine Seed Industry of Shandong, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China.
- Institutes of Evolution and Marine Bioaffiliationersity, OUC, Qingdao, 266003, P. R. China.
| |
Collapse
|
3
|
Yu J, Tian S, Lu G, Xu S, Yang K, Ye L, Li Q, Zhang L, Yang J. Antifreeze Protein-Inspired Zwitterionic Graphene Oxide Nanosheets for a Photothermal Anti-icing Coating. NANO LETTERS 2025; 25:987-994. [PMID: 39789771 DOI: 10.1021/acs.nanolett.4c04478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Organisms that survive at freezing temperatures produce antifreeze proteins (AFPs) to manage ice nucleation and growth. Inspired by AFPs, a series of synthetic materials have been developed to mimic these proteins in order to avoid the limitations of natural AFPs. Despite their great importance in various antifreeze applications, the relationship between structure and performance of AFP mimics remains unclear, especially whether their molecular charge-specific effects on ice inhibition exist. Herein, we design the AFP mimics─charged graphene oxide (GO) nanosheets─grafted with positive charge, negative charge, and zwitterionic groups, respectively. The relationship between the GO charge structure and antifreeze performance is investigated, and the distinct efficiency of charge in ice inhibition is systematically discovered. Based on the best-performing zwitterionic GO nanosheets, a highly efficient anti-icing and deicing coating is created. Moreover, benefiting from the photothermal property of GO nanosheets, the microstructures of coating are constructed to further enhance solar thermal deicing performance.
Collapse
Affiliation(s)
- Junyu Yu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, State Key Laboratory of Synthetic Biology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Shu Tian
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Guangming Lu
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Sijia Xu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, State Key Laboratory of Synthetic Biology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Kai Yang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, State Key Laboratory of Synthetic Biology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Lei Ye
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, State Key Laboratory of Synthetic Biology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Qingsi Li
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, State Key Laboratory of Synthetic Biology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, State Key Laboratory of Synthetic Biology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
- Haihe laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Jing Yang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, State Key Laboratory of Synthetic Biology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| |
Collapse
|
4
|
Shi L, Zang C, Liu Z, Zhao G. Molecular mechanisms of natural antifreeze phenomena and their application in cryopreservation. Biotechnol Bioeng 2024; 121:3655-3671. [PMID: 39210560 DOI: 10.1002/bit.28832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Cryopreservation presents a critical challenge due to cryo-damage, such as crystallization and osmotic imbalances that compromise the integrity of biological tissues and cells. In contrast, various organisms in nature exhibit remarkable freezing tolerance, leveraging complex molecular mechanisms to survive extreme cold. This review explores the adaptive strategies of freeze-tolerant species, including the regulation of specific genes, proteins, and metabolic pathways, to enhance survival in low-temperature environments. We then discuss recent advancements in cryopreservation technologies that aim to mimic these natural phenomena to preserve cellular and tissue integrity. Special focus is given to the roles of glucose metabolism, microRNA expression, and cryoprotective protein modulation in improving cryopreservation outcomes. The insights gained from studying natural antifreeze mechanisms offer promising directions for advancing cryopreservation techniques, with potential applications in medical, agricultural, and conservation fields. Future research should aim to further elucidate these molecular mechanisms to develop more effective and reliable cryopreservation methods.
Collapse
Affiliation(s)
- Lingyu Shi
- Department of Electronic Engineering and Information Sciences, University of Science and Technology of China, Hefei, China
| | - Chuanbao Zang
- Yinfeng Cryomedicine Technology Co., Ltd., Jinan, China
| | - Zhicheng Liu
- Yinfeng Cryomedicine Technology Co., Ltd., Jinan, China
| | - Gang Zhao
- Department of Electronic Engineering and Information Sciences, University of Science and Technology of China, Hefei, China
| |
Collapse
|
5
|
Uko MP, Umana SI, Iwatt IJ, Udoekong NS, Mgbechidinma CL, Adie FU, Akan OD. Microbial ice-binding structures: A review of their applications. Int J Biol Macromol 2024; 275:133670. [PMID: 38971293 DOI: 10.1016/j.ijbiomac.2024.133670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/02/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Microorganisms' ice-binding structures (IBS) are macromolecules with potential commercial value in agriculture, food technology, material technology, cryobiology, and medicine. Microbial ice-structuring or microbial ice-binding particles, with their multi-applications, are simple to use, effective in low amounts, non-toxic, and environmentally friendly. Due to their source and composition diversities, microbial ice-binding structures are gaining attention because they are useable in various conditions. Some microorganisms also produce structures with dual ice-nucleating and anti-freezing properties. Structures that promote ice formation (ice nucleating particles- INPs) act as ice nuclei, lowering the energy barrier between supercooled liquid and ice, causing ice crystals to form. In contrast, anti-freeze particles (AFPs) prevent ice formation and recrystallization through several mechanisms, including disturbing the formation of string hydrogen bonds amongst water molecules, melting already formed ice crystals, and preventing crystal formation by binding to specific sites. Knowledge of the type and function of microbial ice-binding structures lends fundamental insight for possible scaling the production of cheap, functional, and advanced microbial structure-inspired mimics and by-products. This review focuses on microbial ice-binding structures and their potential uses in the food, medicinal, environmental, and agricultural sectors.
Collapse
Affiliation(s)
- Mfoniso Peter Uko
- Faculty of Biological Science, Akwa-Ibom State University, Akwa-Ibom State, Uyo 1167, Nigeria
| | - Senyene Idorenyin Umana
- Faculty of Biological Science, Akwa-Ibom State University, Akwa-Ibom State, Uyo 1167, Nigeria; Department of Microbiology, Faculty of Michael Okpara of Agriculture, Umudike, Nigeria
| | - Ifiok Joseph Iwatt
- Center for Wetlands and Wastes Management Studies, Faculty of Agriculture, University of Uyo, Uyo, Nigeria
| | | | - Chiamaka Linda Mgbechidinma
- School of Life Sciences, Centre for Cell and Development Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; Department of Microbiology, University of Ibadan, Ibadan 200243, Nigeria
| | - Francisca Upekiema Adie
- Department of Microbiology, Faculty of Biological Sciences, Cross River State University of Technology, Calabar, Nigeria
| | - Otobong Donald Akan
- Faculty of Biological Science, Akwa-Ibom State University, Akwa-Ibom State, Uyo 1167, Nigeria; College of Food Science and Engineering, Central South University of Forestry and Technology, 498 South Shaoshan Road, Changsha 410004, China.
| |
Collapse
|
6
|
Ijaz I, Bukhari A, Gilani E, Nazir A, Zain H, Shaheen A, Shaik MR, Assal ME, Khan M. MXene, protein, and KCl-assisted ionic conductive hydrogels with excellent anti-freezing capabilities, self-adhesive, ultra-stretchability, and remarkable mechanical properties for a high-performance wearable flexible sensor. RSC Adv 2024; 14:21786-21798. [PMID: 38984257 PMCID: PMC11231829 DOI: 10.1039/d4ra02707h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024] Open
Abstract
Developing a hydrogel with switchable features and freeze tolerance is remarkably significant for designing flexible electronics to adjust various application needs. Herein, MXenes, AFPs (antifreeze proteins), and potassium chloride (KCl) were introduced to a polyacrylamide (PAM) polymer network to design an anti-freezing hydrogel. The ionic hydrogels are characterized by excellent ionic conductivity, presenting adjustable properties of remarkable mechanical strength and self-adhesion to meet individualized application demands. The capability of KCl and AFPs to inhibit ice crystals gives hydrogels with anti-icing properties under a low-temperature atmosphere. The PAM/MXene15/AFP30/KCl15 hydrogel demonstrated negligible hysteresis behavior, quick electromechanical response (0.10 s), and excellent sensitivity (gauge factor (GF) = 13.1 within the strain range of 1200-2000%). The resulting hydrogel could be immobilized on the animal or human skin to detect different body movements and physiological motions, offering reproducibility and precise accuracy as primary advantages. The approach of developing materials with tunable features, along with inorganic salt and the fish-inspired freeze-tolerance method, offers a new prospect for wearable gadgets.
Collapse
Affiliation(s)
- Irfan Ijaz
- School of Chemistry, Faculty of Basic Sciences and Mathematics, Minhaj University Lahore Lahore 54700 Pakistan
| | - Aysha Bukhari
- School of Chemistry, Faculty of Basic Sciences and Mathematics, Minhaj University Lahore Lahore 54700 Pakistan
| | - Ezaz Gilani
- School of Chemistry, Faculty of Basic Sciences and Mathematics, Minhaj University Lahore Lahore 54700 Pakistan
| | - Ammara Nazir
- School of Chemistry, Faculty of Basic Sciences and Mathematics, Minhaj University Lahore Lahore 54700 Pakistan
| | - Hina Zain
- Department of Chemistry, University of Cincinnati OH 45221 USA
| | - Attia Shaheen
- Institute for Advanced Study, Shenzhen University Shenzhen Guangdong P.R. China
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Mohamed E Assal
- Department of Chemistry, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Mujeeb Khan
- Department of Chemistry, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| |
Collapse
|
7
|
Yang K, Liu D, Feng L, Xu L, Jiang Y, Shen X, Ali A, Lu J, Guo L. Preparation of Peptoid Antifreeze Agents and Their Structure-Property Relationship. Polymers (Basel) 2024; 16:990. [PMID: 38611248 PMCID: PMC11013998 DOI: 10.3390/polym16070990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
The development of nontoxic and efficient antifreeze agents for organ cryopreservation is crucial. However, the research remains highly challenging. In this study, we designed and synthesized a series of peptoid oligomers using the solid-phase submonomer synthesis method by mimicking the amphiphilic structures of antifreeze proteins (AFPs). The obtained peptoid oligomers showed excellent antifreeze properties, reducing the ice crystal growth rate and inhibiting ice recrystallization. The effects of the hydrophobicity and sequence of the peptoid side chains were also studied to reveal the structure-property relationship. The prepared peptoid oligomers were detected as non-cytotoxic and considered to be useful in the biological field. We hope that the peptoid oligomers presented in this study can provide effective strategies for the design of biological cryoprotectants for organ preservation in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jianwei Lu
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Li Guo
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
8
|
Brair VL, Correia LFL, Barbosa NO, Braga RF, Taira AR, da Silva AA, Brandão FZ, Ungerfeld R, Souza-Fabjan JMG. The association of resveratrol and AFPI did not enhance the cryoresistance of ram sperm. Anim Reprod 2024; 21:e20230159. [PMID: 38384723 PMCID: PMC10878549 DOI: 10.1590/1984-3143-ar2023-0159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/15/2024] [Indexed: 02/23/2024] Open
Abstract
Cryoprotectants are required to reduce damage caused to the cells due to low temperatures during the cryopreservation. Antifreeze proteins (AFP) have a well-known role in cell membrane protection, while resveratrol is a potent antioxidant. This study assessed the effect of the association of resveratrol concentrations and AFP I in a ram semen extender. Pooled semen of four rams was allocated into six treatments in a factorial arrangement: (CONT, only the semen extender); only AFP I (ANT: 0.1 µg/mL of AFP I), only resveratrol, one treatment with two levels (10 µM/mL or 50 µM/mL of resveratrol); and two treatments with the interactions, with one AFP I and one of the two levels of resveratrol (0.1 µg/mL of AFP I with 10 µM/mL resveratrol; 0.1 µg/mL of AFP I with 50 µM/mL resveratrol). No interaction between factors was observed on sperm kinetics, plasma membrane integrity, hypo-osmotic test, and mitochondrial activity parameters. There was a high probability (P = 0.06) of reducing sperm cells with functional membrane percentage in the hypo-osmotic test and increasing the percentage of sperm with high mitochondrial activity (P = 0.07) was observed in AFP presence. An interaction of AFP and resveratrol was observed in non-capacitated sperm (P = 0.009), acrosomal reaction (P = 0.034), and sperm binding (P = 0.04). In conclusion, the association of resveratrol and AFP did not improve the quality of frozen-thawed semen and even promoted deleterious effects compared to their single addition in the semen extender. The supplementation of 50 µM/mL of resveratrol improved the outcomes of frozen-thawed ram sperm, being a potential cryoprotectant.
Collapse
Affiliation(s)
- Viviane Lopes Brair
- Faculdade de Veterinária, Universidade Federal Fluminense, Niterói, RJ, Brasil
| | | | | | | | | | - Andreza Amaral da Silva
- Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brasil
| | | | - Rodolfo Ungerfeld
- Departamento de Biociencias Veterinarias, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
| | | |
Collapse
|
9
|
Obadi M, Xu B. Characteristics and applications of plant-derived antifreeze proteins in frozen dough: A review. Int J Biol Macromol 2024; 255:128202. [PMID: 37979748 DOI: 10.1016/j.ijbiomac.2023.128202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
Frozen dough technology has been widely used in the food industry at home and abroad due to its advantages of extending shelf life, preventing aging, and facilitating refrigeration and transportation. However, during the transportation and storage process of frozen dough, the growth and recrystallization of ice crystals caused by temperature fluctuations can lead to a deterioration in the quality of the dough, resulting in poor sensory characteristics of the final product and decreased consumption, which limits the large-scale application of frozen dough. In response to this issue, antifreeze proteins (AFPs) could be used as a beneficial additive to frozen dough that can combine with ice crystals, modify the ice crystal morphology, reduce the freezing point of water, and inhibit the recrystallization of ice crystals. Because of its special structure and function, it can well alleviate the quality deterioration problem caused by ice crystal recrystallization during frozen storage of dough, especially the plant-derived AFPs, which have a prominent effect on inhibiting ice crystal recrystallization. In this review, we introduce the characteristics and mechanisms of action of plant-derived AFPs. Furthermore, the application of plant-derived AFPs in frozen dough are also discussed.
Collapse
Affiliation(s)
- Mohammed Obadi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
10
|
Li X, Li JY, Manzoor MF, Lin QY, Shen JL, Liao L, Zeng XA. Natural deep eutectic solvent: A promising eco-friendly food bio-inspired antifreezing. Food Chem 2023; 437:137808. [PMID: 39491255 DOI: 10.1016/j.foodchem.2023.137808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/27/2023] [Accepted: 10/17/2023] [Indexed: 11/05/2024]
Abstract
Bio-antifreezing is a green and highly effective strategy to inhibit ice nucleation. Bio-inspired antifreezing faces the severe challenges of significant toxicity and complex manufacturing procedures. Bio-inspired antifreezing natural deep eutectic solvent (Ba-NADES) could be an efficient and low or no-toxicity approach for the frozen food industry. Ba-NADES form a strong hydrogen bond network system under cold conditions, capably reducing the melting point of the system below the freezing point and effectively inhibiting ice growth. It has efficaciously alleviated freeze injury by Ba-NADES. The review highlights the current strategies of bio-inspired antifreezing, cold resistance behavior in organisms, and the existing applications of Ba-NADES. It updated information concerning their mechanisms for antifreezing. It emphasizes that the role of water on the antifreezing quality of NADES is worthy of further investigation for more extensive food applications. This work will provide a comprehensive overview of NADES antifreezing.
Collapse
Affiliation(s)
- Xue Li
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong 528225, People's Republic of China; Department of Food Science, Foshan University, Foshan, Guangdong 528000, People's Republic of China
| | - Jia-Ying Li
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong 528225, People's Republic of China; Department of Food Science, Foshan University, Foshan, Guangdong 528000, People's Republic of China
| | - Muhammad Faisal Manzoor
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong 528225, People's Republic of China; Department of Food Science, Foshan University, Foshan, Guangdong 528000, People's Republic of China
| | - Qiu-Ya Lin
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong 528225, People's Republic of China; Department of Food Science, Foshan University, Foshan, Guangdong 528000, People's Republic of China
| | - Jia-Ling Shen
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong 528225, People's Republic of China; Department of Food Science, Foshan University, Foshan, Guangdong 528000, People's Republic of China
| | - Lan Liao
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong 528225, People's Republic of China; Department of Food Science, Foshan University, Foshan, Guangdong 528000, People's Republic of China.
| | - Xin-An Zeng
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong 528225, People's Republic of China; Department of Food Science, Foshan University, Foshan, Guangdong 528000, People's Republic of China.
| |
Collapse
|
11
|
Morelli AM, Scholkmann F. The Significance of Lipids for the Absorption and Release of Oxygen in Biological Organisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1438:93-99. [PMID: 37845446 DOI: 10.1007/978-3-031-42003-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
A critically important step for the uptake and transport of oxygen (O2) in living organisms is the crossing of the phase boundary between gas (or water) and lipid/proteins in the cell. Classically, this transport across the phase boundary is explained as a transport by proteins or protein-based structures. In our contribution here, we want to show the significance of passive transport of O2 also (and in some cases probably predominantly) through lipids in many if not all aerobic organisms. In plants, the significance of lipids for gas exchange (absorption of CO2 and release of O2) is well recognized. The leaves of plants have a cuticle layer as the last film on both sides formed by polyesters and lipids. In animals, the skin has sebum as its last layer consisting of a mixture of neutral fatty esters, cholesterol and waxes which are also at the border between the cells of the body and the air. The last cellular layers of skin are not vascularized therefore their metabolism totally depends on this extravasal O2 absorption, which cannot be replenished by the bloodstream. The human body absorbs about 0.5% of O2 through the skin. In the brain, myelin, surrounding nerve cell axons and being formed by oligodendrocytes, is most probably also responsible for enabling O2 transport from the extracellular space to the cells (neurons). Myelin, being not vascularized and consisting of water, lipids and proteins, seems to absorb O2 in order to transport it to the nerve cell axon as well as to perform extramitochondrial oxidative phosphorylation inside the myelin structure around the axons (i.e., myelin synthesizes ATP) - similarly to the metabolic process occurring in concentric multilamellar structures of cyanobacteria. Another example is the gas transport in the lung where lipids play a crucial role in the surfactant ensuring incorporation of O2 in the alveoli where there are lamellar body and tubular myelin which form multilayered surface films at the air-membrane border of the alveolus. According to our view, the role played by lipids in the physical absorption of gases appears to be crucial to the existence of many, if not all, of the living aerobic species.
Collapse
Affiliation(s)
| | - Felix Scholkmann
- Institute of Complementary and Integrative Medicine, University of Bern, Bern, Switzerland.
- Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
12
|
Yang F, Jiang W, Chen X, Chen X, Wu J, Huang J, Cai X, Wang S. Identification of Novel Antifreeze Peptides from Takifugu obscurus Skin and Molecular Mechanism in Inhibiting Ice Crystal Growth. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14148-14156. [PMID: 36314886 DOI: 10.1021/acs.jafc.2c04393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Foodborne hydrolyzed antifreeze peptides have been widely used in the food industry and the biomedical field. However, the components of hydrolyzed peptides are complex and the molecular mechanism remains unclear. This study focused on identification and mechanism analysis of novel antifreeze peptides from Takifugu obscurus skin by traditional methods and computer-assisted techniques. Results showed that three peptides (EGPRAGGAPG, GDAGPSGPAGPTG, and GEAGPAGPAG) possessed cryoprotection via reducing the freezing point and inhibiting ice crystal growth. Molecular docking confirmed that the cryoprotective property was related to peptide structure, especially α-helix, and hydrogen bond sites. Moreover, the antifreeze peptides were double-faces, which controlled ice crystals while affecting the arrangement of surrounding water molecules, thus exhibiting a strong antifreeze activity. This investigation deepens the comprehension of the mechanism of antifreeze peptides at molecular scale, and the novel efficient antifreeze peptides can be developed in antifreeze materials design and applied in food industry.
Collapse
Affiliation(s)
- Fujia Yang
- College of Chemical Engineering, Fuzhou University, Fuzhou350108, P.R. China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou350108, P.R. China
| | - Wenting Jiang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou350108, P.R. China
| | - Xu Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou350108, P.R. China
| | - Xuan Chen
- College of Chemical Engineering, Fuzhou University, Fuzhou350108, P.R. China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou350108, P.R. China
| | - Jinhong Wu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai200240, P.R. China
| | - Jianlian Huang
- Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing of Ministry of Agriculture and Rural Affairs, Xiamen361022, P.R. China
- Fujian Anjoy Foods Co. Ltd., Xiamen361022, P.R. China
| | - Xixi Cai
- College of Biological Science and Engineering, Fuzhou University, Fuzhou350108, P.R. China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou350108, P.R. China
| |
Collapse
|
13
|
Atomic Details of Biomineralization Proteins Inspiring Protein Design and Reengineering for Functional Biominerals. CHEMISTRY 2022. [DOI: 10.3390/chemistry4030059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Biominerals are extraordinary materials that provide organisms with a variety of functions to support life. The synthesis of biominerals and organization at the macroscopic level is a consequence of the interactions of these materials with proteins. The association of biominerals and proteins is very ancient and has sparked a wealth of research across biological, medical and material sciences. Calcium carbonate, hydroxyapatite, and silica represent widespread natural biominerals. The atomic details of the interface between macromolecules and these biominerals is very intriguing from a chemical perspective, considering the association of chemical entities that are structurally different. With this review I provide an overview of the available structural studies of biomineralization proteins, explored from the Protein Data Bank (wwPDB) archive and scientific literature, and of how these studies are inspiring the design and engineering of proteins able to synthesize novel biominerals. The progression of this review from classical template proteins to silica polymerization seeks to benefit researchers involved in various interdisciplinary aspects of a biomineralization project, who need background information and a quick update on advances in the field. Lessons learned from structural studies are exemplary and will guide new projects for the imaging of new hybrid biomineral/protein superstructures at the atomic level.
Collapse
|