1
|
Huang Z, Ni D, Chen Z, Zhu Y, Zhang W, Mu W. Application of molecular dynamics simulation in the field of food enzymes: improving the thermal-stability and catalytic ability. Crit Rev Food Sci Nutr 2024; 64:11396-11408. [PMID: 37485919 DOI: 10.1080/10408398.2023.2238054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Enzymes can produce high-quality food with low pollution, high function, high acceptability, and medical aid. However, most enzymes, in their native form, do not meet the industrial requirements. Sequence-based and structure-based methods are the two main strategies used for enzyme modification. Molecular Dynamics (MD) simulation is a sufficiently comprehensive technology, from a molecular perspective, which has been widely used for structure information analysis and enzyme modification. In this review, we summarize the progress and development of MD simulation, particularly for software, force fields, and a standard procedure. Subsequently, we review the application of MD simulation in various food enzymes for thermostability and catalytic improvement was reviewed in depth. Finally, the limitations and prospects of MD simulation in food enzyme modification research are discussed. This review highlights the significance of MD simulation and its prospects in food enzyme modification.
Collapse
Affiliation(s)
- Zhaolin Huang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Dawei Ni
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Ziwei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
2
|
Brouwer B, Della-Felice F, Illies JH, Iglesias-Moncayo E, Roelfes G, Drienovská I. Noncanonical Amino Acids: Bringing New-to-Nature Functionalities to Biocatalysis. Chem Rev 2024; 124:10877-10923. [PMID: 39329413 PMCID: PMC11467907 DOI: 10.1021/acs.chemrev.4c00136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024]
Abstract
Biocatalysis has become an important component of modern organic chemistry, presenting an efficient and environmentally friendly approach to synthetic transformations. Advances in molecular biology, computational modeling, and protein engineering have unlocked the full potential of enzymes in various industrial applications. However, the inherent limitations of the natural building blocks have sparked a revolutionary shift. In vivo genetic incorporation of noncanonical amino acids exceeds the conventional 20 amino acids, opening new avenues for innovation. This review provides a comprehensive overview of applications of noncanonical amino acids in biocatalysis. We aim to examine the field from multiple perspectives, ranging from their impact on enzymatic reactions to the creation of novel active sites, and subsequent catalysis of new-to-nature reactions. Finally, we discuss the challenges, limitations, and promising opportunities within this dynamic research domain.
Collapse
Affiliation(s)
- Bart Brouwer
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Franco Della-Felice
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Jan Hendrik Illies
- Department
of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| | - Emilia Iglesias-Moncayo
- Department
of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| | - Gerard Roelfes
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Ivana Drienovská
- Department
of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Ke K, Sun Y, He T, Liu W, Wen Y, Liu S, Wang Q, Gao X. Effects of Feather Hydrolysates Generated by Probiotic Bacillus licheniformis WHU on Gut Microbiota of Broiler and Common carp. J Microbiol 2024; 62:473-487. [PMID: 38421547 DOI: 10.1007/s12275-024-00118-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/20/2024] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
Due to the ever-increasing demand for meat, it has become necessary to identify cheap and sustainable sources of protein for animal feed. Feathers are the major byproduct of poultry industry, which are rich in hard-to-degrade keratin protein. Previously we found that intact feathers can be digested into free amino acids, short peptides, and nano-/micro-keratin particles by the strain Bacillus licheniformis WHU in water, and the resulting feather hydrolysates exhibit prebiotic effects on mice. To explore the potential utilization of feather hydrolysate in the feed industry, we investigated its effects on the gut microbiota of broilers and fish. Our results suggest that feather hydrolysates significantly decrease and increase the diversity of gut microbial communities in broilers and fish, respectively. The composition of the gut microbiota was markedly altered in both of the animals. The abundance of bacteria with potentially pathogenic phenotypes in the gut microbial community of the fish significantly decreased. Staphylococcus spp., Pseudomonas spp., Neisseria spp., Achromobacter spp. were significantly inhibited by the feather hydrolysates. In addition, feather hydrolysates significantly improved proteolytic activity in the guts of broilers and fish. In fish, the expression levels of ZO-1 and TGF-α significantly improved after administration of feather hydrolysates. The results presented here suggest that feather hydrolysates generated by B. licheniformis WHU could be an alternative protein source in aquaculture and could exert beneficial effects on fish.
Collapse
Affiliation(s)
- Kamin Ke
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Yingjie Sun
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Tingting He
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Wenbo Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Yijiao Wen
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Siyuan Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Qin Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, People's Republic of China.
- Dazhou Vocational College of Chinese Medicine, Dazhou, 635000, People's Republic of China.
| | - Xiaowei Gao
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, People's Republic of China.
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Southwest Medical University, Luzhou, 646000, People's Republic of China.
| |
Collapse
|
4
|
Yang Y, Zhang J, Yang J, Luo H, Sun Y, Ke F, Wang Q, Gao X. Directed evolution of the fluorescent protein CGP with in situ biosynthesized noncanonical amino acids. Appl Environ Microbiol 2024; 90:e0186323. [PMID: 38446072 PMCID: PMC11022568 DOI: 10.1128/aem.01863-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/06/2024] [Indexed: 03/07/2024] Open
Abstract
The incorporation of noncanonical amino acids (ncAAs) into proteins can enhance their function beyond the abilities of canonical amino acids and even generate new functions. However, the ncAAs used for such research are usually chemically synthesized, which is expensive and hinders their application on large industrial scales. We believe that the biosynthesis of ncAAs using metabolic engineering and their employment in situ in target protein engineering with genetic code expansion could overcome these limitations. As a proof of principle, we biosynthesized four ncAAs, O-L-methyltyrosine, 3,4-dihydroxy-L-phenylalanine, 5-hydroxytryptophan, and 5-chloro-L-tryptophan using metabolic engineering and directly evolved the fluorescent consensus green protein (CGP) by combination with nine other exogenous ncAAs in Escherichia coli. After screening a TAG scanning library expressing 13 ncAAs, several variants with enhanced fluorescence and stability were identified. The variants CGPV3pMeoF/K190pMeoF and CGPG20pMeoF/K190pMeoF expressed with biosynthetic O-L-methyltyrosine showed an approximately 1.4-fold improvement in fluorescence compared to the original level, and a 2.5-fold improvement in residual fluorescence after heat treatment. Our results demonstrated the feasibility of integrating metabolic engineering, genetic code expansion, and directed evolution in engineered cells to employ biosynthetic ncAAs in protein engineering. These results could further promote the application of ncAAs in protein engineering and enzyme evolution. IMPORTANCE Noncanonical amino acids (ncAAs) have shown great potential in protein engineering and enzyme evolution through genetic code expansion. However, in most cases, ncAAs must be provided exogenously during protein expression, which hinders their application, especially when they are expensive or have poor cell membrane penetration. Engineering cells with artificial metabolic pathways to biosynthesize ncAAs and employing them in situ for protein engineering and enzyme evolution could facilitate their application and reduce costs. Here, we attempted to evolve the fluorescent consensus green protein (CGP) with biosynthesized ncAAs. Our results demonstrated the feasibility of using biosynthesized ncAAs in protein engineering, which could further stimulate the application of ncAAs in bioengineering and biomedicine.
Collapse
Affiliation(s)
- Yanhong Yang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Jing Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Jian Yang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Huiwen Luo
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yingjie Sun
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Famin Ke
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Qin Wang
- Dazhou Vocational College of Chinese Medicine, Dazhou, China
| | - Xiaowei Gao
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Dazhou Vocational College of Chinese Medicine, Dazhou, China
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
5
|
Peng H, Liang M, Zhang J, Liu W, Yang Y, Sun Y, Ke F, Wen Y, Liu S, Xu B, Gao X. Identification and characterization of a versatile keratinase, KerZJ, from Stenotrophomonas sp. LMY. World J Microbiol Biotechnol 2023; 40:30. [PMID: 38057391 DOI: 10.1007/s11274-023-03836-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/11/2023] [Indexed: 12/08/2023]
Abstract
Keratinases have drawn increasing attention in recent decades owing to their catalytic versatility and broad applications from agriculture to medicine. In the present study, we isolated a highly keratinolytic and fibrinolytic bacterium from the campus soil and named it Stenotrophomonas sp. LMY based on genetic information. To identify the potential keratinase genes, the genome sequence of the strain was obtained and analyzed. Sequence alignment and comparison revealed that the protein 1_737 (KerZJ) had the highest sequence homology to a reported keratinase KerBL. We recombinantly expressed KerZJ in Escherichia coli Origami™ (DE) pLysS and purified it to homogeneity. KerZJ showed the highest activity at 40 °C and pH 9.0, and metal ions exhibited no significant effects on its activity. Although reducing agents would break the disulfide bonds in KerZJ and reduce its activity, KerZJ still exhibited the ability to hydrolyze feather keratin in the presence of β-ME. KerZJ could efficiently digest human prion proteins. In addition, KerZJ showed fibrinolytic activity on fibrin plates and effectively eliminated blood clots in a thrombosis mouse model without side effects. Our results suggest that KerZJ is a versatile keratinase with significant potential for keratin treatment, decontamination of prions, and fibrinolytic therapy.
Collapse
Affiliation(s)
- Haixia Peng
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Department of Microbial and Biochemical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Manyu Liang
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Department of Microbial and Biochemical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jing Zhang
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Department of Microbial and Biochemical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Wenbo Liu
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Department of Microbial and Biochemical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yanhong Yang
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Department of Microbial and Biochemical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yingjie Sun
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Department of Microbial and Biochemical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Famin Ke
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Department of Microbial and Biochemical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yijiao Wen
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Department of Microbial and Biochemical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Siyuan Liu
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Department of Microbial and Biochemical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Bilin Xu
- Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Key Laboratories of Economic Forest Germplasm Improvement and Comprehensive Resources Utilization of Hubei Province, College of Life Science, Huanggang Normal University, Huanggang, 438000, Hubei, China.
| | - Xiaowei Gao
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Department of Microbial and Biochemical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
6
|
Zhang J, Liang M, Wu L, Yang Y, Sun Y, Wang Q, Gao X. Bioconversion of feather waste into bioactive nutrients in water by Bacillus licheniformis WHU. Appl Microbiol Biotechnol 2023; 107:7055-7070. [PMID: 37750916 DOI: 10.1007/s00253-023-12795-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/23/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023]
Abstract
Feathers become hazardous pollutants when deposited directly into the environment. The rapid expansion of the poultry industry has significantly increased feather waste, necessitating the development of new ways to degrade and utilize feathers. This study investigated the ability of Bacillus licheniformis WHU to digest intact chicken feathers in water. The results indicated that yields of free amino acids, bioactive peptides, and keratin-derived nano-/micro-particles were improved in bacteria- versus purified keratinase-derived feather hydrolysate. Bacteria-derived feather hydrolysate supplementation induced health benefits in mice, including significantly increased intestinal villus height and zonula occludens-1 protein expression, as well as increased secretory immunoglobulin A levels in the intestinal mucosa and superoxide dismutase activity in serum. Additionally, feather hydrolysate supplementation modulated the mouse gut microbiota, reflected by increased relative abundance of probiotics such as Lactobacillus spp., decreased relative abundance of Proteobacteria at the phylum level and pathogens such as Staphylococcus spp., and increased Bacteroidota/Firmicutes ratio. This study developed a simple, cost-effective method to degrade feathers by B. licheniformis WHU digestion, yielding a hydrolysate that can be directly used as a bioactive nutrient resource. The study findings have applications in the livestock, poultry, and aquaculture industries, which have high demands for cheap protein. KEY POINTS: • Bacillus licheniformis could degrade intact feather in water. • The resulting feather hydrolysate shows prebiotic effects on mouse.
Collapse
Affiliation(s)
- Jing Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Manyu Liang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Lijuan Wu
- Department of Endocrinology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yanhong Yang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yingjie Sun
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Qin Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Dazhou Vocational College of Chinese Medicine, Tongchuan District, Luojiang Town, Dazhou, 635000, China.
| | - Xiaowei Gao
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Dazhou Vocational College of Chinese Medicine, Tongchuan District, Luojiang Town, Dazhou, 635000, China.
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
7
|
Nezhad NG, Rahman RNZRA, Normi YM, Oslan SN, Shariff FM, Leow TC. Recent advances in simultaneous thermostability-activity improvement of industrial enzymes through structure modification. Int J Biol Macromol 2023; 232:123440. [PMID: 36708895 DOI: 10.1016/j.ijbiomac.2023.123440] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
Engineered thermostable microbial enzymes are widely employed to catalyze chemical reactions in numerous industrial sectors. Although high thermostability is a prerequisite of industrial applications, enzyme activity is usually sacrificed during thermostability improvement. Therefore, it is vital to select the common and compatible strategies between thermostability and activity improvement to reduce mutants̕ libraries and screening time. Three functional protein engineering approaches, including directed evolution, rational design, and semi-rational design, are employed to manipulate protein structure on a genetic basis. From a structural standpoint, integrative strategies such as increasing substrate affinity; introducing electrostatic interaction; removing steric hindrance; increasing flexibility of the active site; N- and C-terminal engineering; and increasing intramolecular and intermolecular hydrophobic interactions are well-known to improve simultaneous activity and thermostability. The current review aims to analyze relevant strategies to improve thermostability and activity simultaneously to circumvent the thermostability and activity trade-off of industrial enzymes.
Collapse
Affiliation(s)
- Nima Ghahremani Nezhad
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Yahaya M Normi
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Fairolniza Mohd Shariff
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
8
|
Pagar AD, Jeon H, Khobragade TP, Sarak S, Giri P, Lim S, Yoo TH, Ko BJ, Yun H. Non-Canonical Amino Acid-Based Engineering of ( R)-Amine Transaminase. Front Chem 2022; 10:839636. [PMID: 35295971 PMCID: PMC8918476 DOI: 10.3389/fchem.2022.839636] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/07/2022] [Indexed: 01/07/2023] Open
Abstract
Non-canonical amino acids (ncAAs) have been utilized as an invaluable tool for modulating the active site of the enzymes, probing the complex enzyme mechanisms, improving catalytic activity, and designing new to nature enzymes. Here, we report site-specific incorporation of p-benzoyl phenylalanine (pBpA) to engineer (R)-amine transaminase previously created from d-amino acid aminotransferase scaffold. Replacement of the single Phe88 residue at the active site with pBpA exhibits a significant 15-fold and 8-fold enhancement in activity for 1-phenylpropan-1-amine and benzaldehyde, respectively. Reshaping of the enzyme's active site afforded an another variant F86A/F88pBpA, with 30% higher thermostability at 55°C without affecting parent enzyme activity. Moreover, various racemic amines were successfully resolved by transaminase variants into (S)-amines with excellent conversions (∼50%) and enantiomeric excess (>99%) using pyruvate as an amino acceptor. Additionally, kinetic resolution of the 1-phenylpropan-1-amine was performed using benzaldehyde as an amino acceptor, which is cheaper than pyruvate. Our results highlight the utility of ncAAs for designing enzymes with enhanced functionality beyond the limit of 20 canonical amino acids.
Collapse
Affiliation(s)
- Amol D. Pagar
- Department of Systems Biotechnology, Konkuk University, Seoul, South Korea
| | - Hyunwoo Jeon
- Department of Systems Biotechnology, Konkuk University, Seoul, South Korea
| | | | - Sharad Sarak
- Department of Systems Biotechnology, Konkuk University, Seoul, South Korea
| | - Pritam Giri
- Department of Systems Biotechnology, Konkuk University, Seoul, South Korea
| | - Seonga Lim
- Department of Systems Biotechnology, Konkuk University, Seoul, South Korea
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Byoung Joon Ko
- School of Biopharmaceutical and Medical Sciences, Sungshin Women’s University, Seoul, South Korea
| | - Hyungdon Yun
- Department of Systems Biotechnology, Konkuk University, Seoul, South Korea
| |
Collapse
|