1
|
Folts L, Martinez AS, McKey J. Tissue clearing and imaging approaches for in toto analysis of the reproductive system†. Biol Reprod 2024; 110:1041-1054. [PMID: 38159104 PMCID: PMC11180619 DOI: 10.1093/biolre/ioad182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024] Open
Abstract
New microscopy techniques in combination with tissue clearing protocols and emerging analytical approaches have presented researchers with the tools to understand dynamic biological processes in a three-dimensional context. This paves the road for the exploration of new research questions in reproductive biology, for which previous techniques have provided only approximate resolution. These new methodologies now allow for contextualized analysis of far-larger volumes than was previously possible. Tissue optical clearing and three-dimensional imaging techniques posit the bridging of molecular mechanisms, macroscopic morphogenic development, and maintenance of reproductive function into one cohesive and comprehensive understanding of the biology of the reproductive system. In this review, we present a survey of the various tissue clearing techniques and imaging systems, as they have been applied to the developing and adult reproductive system. We provide an overview of tools available for analysis of experimental data, giving particular attention to the emergence of artificial intelligence-assisted methods and their applicability to image analysis. We conclude with an evaluation of how novel image analysis approaches that have been applied to other organ systems could be incorporated into future experimental evaluation of reproductive biology.
Collapse
Affiliation(s)
- Lillian Folts
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora CO, USA
| | - Anthony S Martinez
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora CO, USA
| | - Jennifer McKey
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora CO, USA
| |
Collapse
|
2
|
Delage E, Guilbert T, Yates F. Successful 3D imaging of cleared biological samples with light sheet fluorescence microscopy. J Cell Biol 2023; 222:e202307143. [PMID: 37847528 PMCID: PMC10583220 DOI: 10.1083/jcb.202307143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 10/18/2023] Open
Abstract
In parallel with the development of tissue-clearing methods, over the last decade, light sheet fluorescence microscopy has contributed to major advances in various fields, such as cell and developmental biology and neuroscience. While biologists are increasingly integrating three-dimensional imaging into their research projects, their experience with the technique is not always up to their expectations. In response to a survey of specific challenges associated with sample clearing and labeling, image acquisition, and data analysis, we have critically assessed the recent literature to characterize the difficulties inherent to light sheet fluorescence microscopy applied to cleared biological samples and to propose solutions to overcome them. This review aims to provide biologists interested in light sheet fluorescence microscopy with a primer for the development of their imaging pipeline, from sample preparation to image analysis. Importantly, we believe that issues could be avoided with better anticipation of image analysis requirements, which should be kept in mind while optimizing sample preparation and acquisition parameters.
Collapse
Affiliation(s)
- Elise Delage
- CellTechs Laboratory, SupBiotech, Villejuif, France
- Service d’Etude des Prions et des Infections Atypiques, Institut François Jacob, Commissariat à l’Energie Atomique et aux Energies Alternatives, Université Paris Saclay, Fontenay-aux-Roses, France
| | - Thomas Guilbert
- Institut Cochin, Institut national de la santé et de la recherche médicale (U1016), Centre National de la Recherche Scientifique (UMR 8104), Université de Paris (UMR-S1016), Paris, France
| | - Frank Yates
- CellTechs Laboratory, SupBiotech, Villejuif, France
- Service d’Etude des Prions et des Infections Atypiques, Institut François Jacob, Commissariat à l’Energie Atomique et aux Energies Alternatives, Université Paris Saclay, Fontenay-aux-Roses, France
| |
Collapse
|
3
|
Jin BH, Woo J, Lee M, Ku S, Moon HS, Ryu SJ, Hyun YM, Park JY, Kuh SU, Cho YE. Optimization of the optical transparency of bones by PACT-based passive tissue clearing. Exp Mol Med 2023; 55:2190-2204. [PMID: 37779150 PMCID: PMC10618275 DOI: 10.1038/s12276-023-01089-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 10/03/2023] Open
Abstract
Recent developments in tissue clearing methods such as the passive clearing technique (PACT) have allowed three-dimensional analysis of biological structures in whole, intact tissues, thereby providing a greater understanding of spatial relationships and biological circuits. Nonetheless, the issues that remain in maintaining structural integrity and preventing tissue expansion/shrinkage with rapid clearing still inhibit the wide application of these techniques in hard bone tissues, such as femurs and tibias. Here, we present an optimized PACT-based bone-clearing method, Bone-mPACT+, that protects biological structures. Bone-mPACT+ and four different decalcifying procedures were tested for their ability to improve bone tissue clearing efficiency without sacrificing optical transparency; they rendered nearly all types of bone tissues transparent. Both mouse and rat bones were nearly transparent after the clearing process. We also present a further modification, the Bone-mPACT+ Advance protocol, which is specifically optimized for processing the largest and hardest rat bones for easy clearing and imaging using established tissue clearing methods.
Collapse
Affiliation(s)
- Byung-Ho Jin
- The Spine and Spinal Cord Institute, Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea
- College of Medicine, Yonsei University Graduate School, Seoul, 03722, Republic of Korea
- Department of Neurosurgery, International ST Mary´s Hospital, College of Medicine, Catholic Kwandong University, Incheon, 22711, Republic of Korea
| | - Jiwon Woo
- The Spine and Spinal Cord Institute, Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea
- Department of Neurosurgery, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Biomedical Research Institute, Biohedron, Seoul, 06230, Republic of Korea
- Biomedical Research Center, Gangnam Severance Hospital, Seoul, 06230, Republic of Korea
| | - Mirae Lee
- The Spine and Spinal Cord Institute, Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea
- Department of Neurosurgery, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Biomedical Research Center, Gangnam Severance Hospital, Seoul, 06230, Republic of Korea
| | - Seockmo Ku
- Department of Food Science and Technology, Texas A&M University, College Station, TX, 77843, USA
| | - Hyung Seok Moon
- Biomedical Research Center, Gangnam Severance Hospital, Seoul, 06230, Republic of Korea
| | - Seung Jun Ryu
- The Spine and Spinal Cord Institute, Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea
- Department of Neurosurgery, Daejeon Eulji Medical Center, Eulji University, Daejeon, 35233, Republic of Korea
| | - Young-Min Hyun
- Department of Anatomy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jeong-Yoon Park
- The Spine and Spinal Cord Institute, Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea
- College of Medicine, Yonsei University Graduate School, Seoul, 03722, Republic of Korea
- Department of Neurosurgery, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Sung Uk Kuh
- The Spine and Spinal Cord Institute, Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea
- College of Medicine, Yonsei University Graduate School, Seoul, 03722, Republic of Korea
- Biomedical Research Center, Gangnam Severance Hospital, Seoul, 06230, Republic of Korea
- Department of Medical Device Engineering and Management, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Yong Eun Cho
- The Spine and Spinal Cord Institute, Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea.
- College of Medicine, Yonsei University Graduate School, Seoul, 03722, Republic of Korea.
- Department of Neurosurgery, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
- Department of Neurosurgery, Wiltse Memorial Hospital, Suwon-si, Gyeonggi-do, 16480, Republic of Korea.
| |
Collapse
|
4
|
Abstract
Multiplex imaging has emerged as an invaluable tool for immune-oncologists and translational researchers, enabling them to examine intricate interactions among immune cells, stroma, matrix, and malignant cells within the tumor microenvironment (TME). It holds significant promise in the quest to discover improved biomarkers for treatment stratification and identify novel therapeutic targets. Nonetheless, several challenges exist in the realms of study design, experiment optimization, and data analysis. In this review, our aim is to present an overview of the utilization of multiplex imaging in immuno-oncology studies and inform novice researchers about the fundamental principles at each stage of the imaging and analysis process.
Collapse
Affiliation(s)
- Chen Zhao
- Thoracic and GI Malignancies Branch, CCR, NCI, Bethesda, Maryland, USA
- Lymphocyte Biology Section, Laboratory of Immune System Biology, NIAID, Bethesda, Maryland, USA
| | - Ronald N Germain
- Lymphocyte Biology Section, Laboratory of Immune System Biology, NIAID, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Silva HF, Martins IS, Bogdanov AA, Tuchin VV, Oliveira LM. Characterization of optical clearing mechanisms in muscle during treatment with glycerol and gadobutrol solutions. JOURNAL OF BIOPHOTONICS 2023; 16:e202200205. [PMID: 36101493 DOI: 10.1002/jbio.202200205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/18/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
The recent increasing interest in the application of radiology contrasting agents to create transparency in biological tissues implies that the diffusion properties of those agents need evaluation. The comparison of those properties with the ones obtained for other optical clearing agents allows to perform an optimized agent selection to create optimized transparency in clinical applications. In this study, the evaluation and comparison of the diffusion properties of gadobutrol and glycerol in skeletal muscle was made, showing that although gadobutrol has a higher molar mass than glycerol, its low viscosity allows for a faster diffusion in the muscle. The characterization of the tissue dehydration and refractive index matching mechanisms of optical clearing was made in skeletal muscle, namely by the estimation of the diffusion coefficients for water, glycerol and gadobutrol. The estimated tortuosity values of glycerol (2.2) and of gadobutrol (1.7) showed a longer path-length for glycerol in the muscle.
Collapse
Affiliation(s)
- Hugo F Silva
- Centre of Innovation in Engineering and Industrial Technology (CIETI), Polytechnic of Porto, Porto, Portugal
| | - Inês S Martins
- Centre of Innovation in Engineering and Industrial Technology (CIETI), Polytechnic of Porto, Porto, Portugal
| | - Alexei A Bogdanov
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation
- Department of Radiology, UMass Chan Medical School, Worcester, Massachusetts, USA
- Department of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russian Federation
| | - Valery V Tuchin
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation
- Science Medical Center, Saratov State University, Saratov, Russian Federation
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russian Federation
- Laboratory of Laser Diagnostics of Technical and Living Systems, Institute of Precision Mechanics and Control, FRC "Saratov Research Centre of Russian Academy of Sciences,", Saratov, Russian Federation
| | - Luís M Oliveira
- Centre of Innovation in Engineering and Industrial Technology (CIETI), Polytechnic of Porto, Porto, Portugal
- Physics Department, School of Engineering, Polytechnic of Porto, Porto, Portugal
| |
Collapse
|