1
|
Yan WT, Wang JS, Fan PZ, Roberts S, Wright K, Zhang ZZ. The clinical potential of meniscal progenitor cells. THE JOURNAL OF CARTILAGE & JOINT PRESERVATION 2024; 4:None. [PMID: 39669533 PMCID: PMC11636529 DOI: 10.1016/j.jcjp.2024.100166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/29/2024] [Accepted: 02/11/2024] [Indexed: 12/14/2024]
Abstract
Introduction The meniscus is an important cushioning structure of the knee joint, with the maintenance of its normal structure and function playing a crucial role in protecting the joint from early degeneration. Stem/progenitor cells could be the key to help researchers to have a deeper understanding of the biological process of meniscal injury repair and may be important in the meniscus tissue regeneration processes. To the best of our knowledge, there is currently a lack of comprehensive reviews on existing research about the meniscus progenitor cells (MPCs). Objectives By reviewing the existing MPC literature, we aim to provide insights for future research on meniscus regeneration. Methods The isolation methods, biological characteristics and the translational application of MPCs were summarized. Results MPCs could be isolated according to their colony-forming ability, marker expression, migration ability, and differential adhesion to fibronectin. Most existing studies on surface markers of MPCs have largely followed the paradigm of mesenchymal stromal/stem cell research. Based on the information provided by their surface markers and expression profile, researchers located MPCs in the peripheral surface area of the meniscus. Few researches have investigated the translation and application of MPCs, with most studies being limited to MPCs extraction and subsequent reimplantation in vivo. Conclusions MPCs are a group of meniscus-resident cells, which exhibit certain stem/progenitor cell characteristics, such as the ability to undergo multilineage differentiation in in vitro culture.
Collapse
Affiliation(s)
- Wan-Ting Yan
- Department of Sports Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jing-Song Wang
- Department of Sports Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | | | - Sally Roberts
- Spinal Studies & Cartilage Research Group, Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Trust, Oswestry, United Kingdom
- School of Pharmacy and Bioengineering, Keele University, Staffordshire, United Kingdom
| | - Karina Wright
- Spinal Studies & Cartilage Research Group, Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Trust, Oswestry, United Kingdom
- School of Pharmacy and Bioengineering, Keele University, Staffordshire, United Kingdom
| | - Zheng-Zheng Zhang
- Department of Sports Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
2
|
Zhang M, Dai G, Zhang Y, Lu P, Wang H, Li Y, Rui Y. Enhancing osteogenic differentiation of diabetic tendon stem/progenitor cells through hyperoxia: Unveiling ROS/HIF-1α signalling axis. J Cell Mol Med 2024; 28:e70127. [PMID: 39467998 PMCID: PMC11518821 DOI: 10.1111/jcmm.70127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 08/10/2024] [Accepted: 09/20/2024] [Indexed: 10/30/2024] Open
Abstract
Diabetic calcific tendinopathy is the leading cause of chronic pain, mobility restriction, and tendon rupture in patients with diabetes. Tendon stem/progenitor cells (TSPCs) have been implicated in the development of diabetic calcified tendinopathy, but the molecular mechanisms remain unclear. This study found that diabetic tendons have a hyperoxic environment, characterized by increased oxygen delivery channels and carriers. In hyperoxic environment, TSPCs showed enhanced osteogenic differentiation and increased levels of reactive oxygen species (ROS). Additionally, hypoxia-inducible factor-1a (HIF-1a), a protein involved in regulating cellular responses to hyperoxia, was decreased in TSPCs by the ubiquitin-proteasome system. By intervening with antioxidant N-acetyl-L-cysteine (NAC) and overexpressing HIF-1a, we discovered that blocking the ROS/HIF-1a signalling axis significantly inhibited the osteogenic differentiation ability of TSPCs. Animal experiments further confirmed that hyperoxic environment could cause calcification in the Achilles tendon tissue of rats, while NAC intervention prevented calcification. These findings demonstrate that hyperoxia in diabetic tendons promotes osteogenic differentiation of TSPCs through the ROS/HIF-1a signalling axis. This study provides a new theoretical basis and research target for preventing and treating diabetic calcified tendinopathy.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Orthopedics, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingPeople's Republic of China
- School of MedicineSoutheast UniversityNanjingPeople's Republic of China
- Orthopaedic Trauma Institute (OTI)Southeast UniversityNanjingChina
- Trauma Center, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingPeople's Republic of China
| | - Guan‐Chun Dai
- Department of Orthopedics, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingPeople's Republic of China
- School of MedicineSoutheast UniversityNanjingPeople's Republic of China
- Orthopaedic Trauma Institute (OTI)Southeast UniversityNanjingChina
- Trauma Center, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingPeople's Republic of China
| | - Yuan‐Wei Zhang
- Department of Orthopedics, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingPeople's Republic of China
- School of MedicineSoutheast UniversityNanjingPeople's Republic of China
- Orthopaedic Trauma Institute (OTI)Southeast UniversityNanjingChina
- Trauma Center, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingPeople's Republic of China
| | - Pan‐Pan Lu
- Department of Orthopedics, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingPeople's Republic of China
- School of MedicineSoutheast UniversityNanjingPeople's Republic of China
- Orthopaedic Trauma Institute (OTI)Southeast UniversityNanjingChina
- Trauma Center, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingPeople's Republic of China
| | - Hao Wang
- Department of Orthopedics, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingPeople's Republic of China
- School of MedicineSoutheast UniversityNanjingPeople's Republic of China
- Orthopaedic Trauma Institute (OTI)Southeast UniversityNanjingChina
- Trauma Center, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingPeople's Republic of China
| | - Ying‐Juan Li
- Department of Geriatrics, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingPeople's Republic of China
| | - Yun‐Feng Rui
- Department of Orthopedics, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingPeople's Republic of China
- School of MedicineSoutheast UniversityNanjingPeople's Republic of China
- Orthopaedic Trauma Institute (OTI)Southeast UniversityNanjingChina
- Trauma Center, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingPeople's Republic of China
| |
Collapse
|
3
|
Yan WT, Wang JS, Guo SY, Zhu JH, Zhang ZZ. Isolation and Characterization of Meniscus Progenitor Cells From Rat, Rabbit, Goat, and Human. Cartilage 2024:19476035241266579. [PMID: 39058020 PMCID: PMC11569696 DOI: 10.1177/19476035241266579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/22/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
OBJECTIVE Meniscus progenitor cells (MPCs) have been identified as promising candidates for meniscus regeneration, and it is crucial for us to understand meniscus injury repair mechanism at the cellular level. In this study, we investigate the biological properties of MPCs isolated from different species using the differential adhesion to fibronectin (DAF) technique. We aim to characterize MPCs in different species and evaluate the feasibility of these models for future meniscal investigation. DESIGN MPCs were isolated from freshly digested meniscus from rat, rabbit, goat, and human cells using DAF. Biological properties, including proliferation, colony-forming, multilineage differentiation, and migration abilities, were compared in MPCs and their corresponding mixed meniscus cell (MCs) population in each species. RESULTS MPCs were successfully isolated by the DAF technique in all species. Rat MPCs appeared cobblestone-like, rabbit MPCs were more polygonal, goat MPCs had a spindle-shaped morphology, human MPCs appear more fibroblast-like. Compared with MCs, isolated MPCs showed progenitor cell characteristics, including multilineage differentiation ability and MSC (mesenchymal stem cells) markers (CD166, CD90, CD44, Stro-1) expression. They also highly expressed fibronectin receptors CD49e and CD49c. MPCs also showed greater proliferation capacity and retained colony-forming ability. Except for goat MPCs showed greater migration abilities than MCs, no significant differences were found in the migration ability between MPCs and MCs in other species. CONCLUSION Our study shows that DAF is an effective method for isolating MPCs from rat, rabbit, goat, and human. MPCs in these species demonstrated similar characteristics, including greater proliferation ability and better chondrogenic potential.
Collapse
Affiliation(s)
- Wan-Ting Yan
- Department of Sports Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Jing-Song Wang
- Department of Sports Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Shu-Yang Guo
- Department of Sports Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Jia-Hao Zhu
- Department of Sports Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Zheng-Zheng Zhang
- Department of Sports Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| |
Collapse
|
4
|
Tragoonlugkana P, Pruksapong C, Ontong P, Kamprom W, Supokawej A. Fibronectin and vitronectin alleviate adipose-derived stem cells senescence during long-term culture through the AKT/MDM2/P53 pathway. Sci Rep 2024; 14:14242. [PMID: 38902430 PMCID: PMC11189918 DOI: 10.1038/s41598-024-65339-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/19/2024] [Indexed: 06/22/2024] Open
Abstract
Cellular senescence plays a role in the development of aging-associated degenerative diseases. Cell therapy is recognized as a candidate treatment for degenerative diseases. To achieve the goal of cell therapy, the quality and good characteristics of cells are concerned. Cell expansion relies on two-dimensional culture, which leads to replicative senescence of expanded cells. This study aimed to investigate the effect of cell culture surface modification using fibronectin (FN) and vitronectin (VN) in adipose-derived stem cells (ADSCs) during long-term expansion. Our results showed that ADSCs cultured in FN and VN coatings significantly enhanced adhesion, proliferation, and slow progression of cellular senescence as indicated by lower SA-β-gal activities and decreased expression levels of genes including p16, p21, and p53. The upregulation of integrin α5 and αv genes influences phosphatidylinositol 4,5-bisphosphate 3-kinase (PI3K), and AKT proteins. FN and VN coatings upregulated AKT and MDM2 leading to p53 degradation. Additionally, MDM2 inhibition by Nutlin-3a markedly elevated p53 and p21 expression, increased cellular senescence, and induced the expression of inflammatory molecules including HMGB1 and IL-6. The understanding of FN and VN coating surface influencing ADSCs, especially senescence characteristics, offers a promising and practical point for the cultivation of ADSCs for future use in cell-based therapies.
Collapse
Affiliation(s)
- Patcharapa Tragoonlugkana
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon Sai 4, Salaya, Phutthamonthon, Nakhon Pathom, 73170, Thailand
| | - Chatchai Pruksapong
- Department of Surgery, Phramongkutklao Hospital and Phramongkutklao College of Medicine, Bangkok, 10400, Thailand
| | - Pawared Ontong
- Department of Community Medical Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Witchayapon Kamprom
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Aungkura Supokawej
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon Sai 4, Salaya, Phutthamonthon, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
5
|
Ronca A, D'Amora U, Capuana E, Zihlmann C, Stiefel N, Pattappa G, Schewior R, Docheva D, Angele P, Ambrosio L. Development of a highly concentrated collagen ink for the creation of a 3D printed meniscus. Heliyon 2023; 9:e23107. [PMID: 38144315 PMCID: PMC10746456 DOI: 10.1016/j.heliyon.2023.e23107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023] Open
Abstract
The most prevalent extracellular matrix (ECM) protein in the meniscus is collagen, which controls cell activity and aids in preserving the biological and structural integrity of the ECM. To create stable and high-precision 3D printed collagen scaffolds, ink formulations must possess good printability and cytocompatibility. This study aims to overlap the limitation in the 3D printing of pure collagen, and to develop a highly concentrated collagen ink for meniscus fabrication. The extrusion test revealed that 12.5 % collagen ink had the best combination of high collagen concentration and printability. The ink was specifically designed to have load-bearing capacity upon printing and characterized with respect to rheological and extrusion properties. Following printing of structures with different infill, a series of post-processing steps, including salt stabilization, pH shifting, washing, freeze-drying, crosslinking and sterilization were performed, and optimised to maintain the stability of the engineered construct. Mechanical testing highlighted a storage modulus of 70 kPa for the lower porous structure while swelling properties showed swelling ratio between 9 and 11 after 15 min of soaking. Moreover, human avascular and vascular meniscus cells cultured on the scaffolds deposited a meniscus-like matrix containing collagen I, II and glycosaminoglycans after 28 days of culture. Finally, as proof-of-concept, human size 3D printed meniscus scaffold were created.
Collapse
Affiliation(s)
- Alfredo Ronca
- Institute of Polymers, Composites and Biomaterials, National Research Council, Naples, Italy
| | - Ugo D'Amora
- Institute of Polymers, Composites and Biomaterials, National Research Council, Naples, Italy
| | - Elisa Capuana
- Institute of Polymers, Composites and Biomaterials, National Research Council, Naples, Italy
| | - Carla Zihlmann
- Geistlich Pharma AG (Geistlich), Bahnhofstrasse 40, CH-6110 Wolhusen, Switzerland
| | - Niklaus Stiefel
- Geistlich Pharma AG (Geistlich), Bahnhofstrasse 40, CH-6110 Wolhusen, Switzerland
| | - Girish Pattappa
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Ruth Schewior
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Denitsa Docheva
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
- Department of Musculoskeletal Tissue Regeneration, Orthopaedic Hospital König-Ludwig-Haus, University of Wurzburg, Germany
| | - Peter Angele
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
- Sporthopaedicum Regensburg, Hildegard von Bingen Strasse 1, 93053 Regensburg, Germany
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials, National Research Council, Naples, Italy
| |
Collapse
|
6
|
Barceló X, Eichholz K, Gonçalves I, Kronemberger GS, Dufour A, Garcia O, Kelly DJ. Bioprinting of scaled-up meniscal grafts by spatially patterning phenotypically distinct meniscus progenitor cells within melt electrowritten scaffolds. Biofabrication 2023; 16:015013. [PMID: 37939395 DOI: 10.1088/1758-5090/ad0ab9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 11/07/2023] [Indexed: 11/10/2023]
Abstract
Meniscus injuries are a common problem in orthopedic medicine and are associated with a significantly increased risk of developing osteoarthritis. While developments have been made in the field of meniscus regeneration, the engineering of cell-laden constructs that mimic the complex structure, composition and biomechanics of the native tissue remains a significant challenge. This can be linked to the use of cells that are not phenotypically representative of the different zones of the meniscus, and an inability to direct the spatial organization of engineered meniscal tissues. In this study we investigated the potential of zone-specific meniscus progenitor cells (MPCs) to generate functional meniscal tissue following their deposition into melt electrowritten (MEW) scaffolds. We first confirmed that fibronectin selected MPCs from the inner and outer regions of the meniscus maintain their differentiation capacity with prolonged monolayer expansion, opening their use within advanced biofabrication strategies. By depositing MPCs within MEW scaffolds with elongated pore shapes, which functioned as physical boundaries to direct cell growth and extracellular matrix production, we were able to bioprint anisotropic fibrocartilaginous tissues with preferentially aligned collagen networks. Furthermore, by using MPCs isolated from the inner (iMPCs) and outer (oMPCs) zone of the meniscus, we were able to bioprint phenotypically distinct constructs mimicking aspects of the native tissue. An iterative MEW process was then implemented to print scaffolds with a similar wedged-shaped profile to that of the native meniscus, into which we deposited iMPCs and oMPCs in a spatially controlled manner. This process allowed us to engineer sulfated glycosaminoglycan and collagen rich constructs mimicking the geometry of the meniscus, with MPCs generating a more fibrocartilage-like tissue compared to the mesenchymal stromal/stem cells. Taken together, these results demonstrate how the convergence of emerging biofabrication platforms with tissue-specific progenitor cells can enable the engineering of complex tissues such as the meniscus.
Collapse
Affiliation(s)
- Xavier Barceló
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin D02 R590, Ireland
- Department of Mechanical, Manufacturing, & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin D02 R590, Ireland
- Advanced Materials & Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland & Trinity College Dublin, Dublin D02 F6N2, Ireland
| | - Kian Eichholz
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin D02 R590, Ireland
- Department of Mechanical, Manufacturing, & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin D02 R590, Ireland
- Advanced Materials & Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland & Trinity College Dublin, Dublin D02 F6N2, Ireland
| | - Inês Gonçalves
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin D02 R590, Ireland
- Department of Mechanical, Manufacturing, & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin D02 R590, Ireland
- Advanced Materials & Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland & Trinity College Dublin, Dublin D02 F6N2, Ireland
| | - Gabriela S Kronemberger
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin D02 R590, Ireland
- Department of Mechanical, Manufacturing, & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin D02 R590, Ireland
- Advanced Materials & Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland & Trinity College Dublin, Dublin D02 F6N2, Ireland
| | - Alexandre Dufour
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin D02 R590, Ireland
- Department of Mechanical, Manufacturing, & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin D02 R590, Ireland
- Advanced Materials & Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland & Trinity College Dublin, Dublin D02 F6N2, Ireland
| | - Orquidea Garcia
- Johnson & Johnson 3D Printing Innovation & Customer Solutions, Johnson & Johnson Services, Inc, Dublin D02 R590, Ireland
| | - Daniel J Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin D02 R590, Ireland
- Department of Mechanical, Manufacturing, & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin D02 R590, Ireland
- Advanced Materials & Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland & Trinity College Dublin, Dublin D02 F6N2, Ireland
- Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| |
Collapse
|
7
|
Torres-Claramunt R, Martínez-Díaz S, Sánchez-Soler JF, Tio-Barrera L, Arredondo R, Triginer L, Monllau JC. Fibronectin-coated polyurethane meniscal scaffolding supplemented with MSCs improves scaffold integration and proteoglycan production in a rabbit model. Knee Surg Sports Traumatol Arthrosc 2023; 31:5104-5110. [PMID: 37725106 DOI: 10.1007/s00167-023-07562-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/30/2023] [Indexed: 09/21/2023]
Abstract
PURPOSE The role of mesenchymal stem cells (MSC) in supporting the formation of new meniscal tissue in a meniscal scaffold is not well understood. The objective of this study was to assess the quality of the meniscal tissue produced in a fibronectin (FN)-coated polyurethane (PU) meniscal scaffold after a meniscal injury was made in an experimental rabbit model. METHODS Twelve New Zealand white rabbits were divided in two groups after performing a medial meniscectomy of the anterior horn. In group 1, the meniscal defect was reconstructed with a non-MSC supplemented FN-coated PU scaffold. On the other hand, the same scaffold supplemented with MSCs was used in group 2. The animals were sacrificed at 12 week after index surgery. A modified scoring system was used for histological assessment. This new scoring (ranging from 0 to 15) includes a structural evaluation (meniscal scaffold interface and extracellular matrix production) and tissue quality evaluation (proteoglycan and type I-collagen content). RESULTS The meniscal scaffold was found loose in the joint in three cases, corresponding to two cases in group 1 and 1 case in group 2. No differences were observed between the groups in terms of the total score (7.0 ± 0.9 vs. 9.4 ± 2.6, p = 0.09). However, differences were observed in group 2 in which 2 out of the 5 scored items, scaffold integration (1 ± 0.0 vs. 1.9 ± 0.6, p = 0.03) and proteoglycan production (1.2 ± 0.3 vs. 2.4 ± 0.2, p = 0.001). A trend to a higher production of Type I-Collagen production was also observed in group 2 (1.1 ± 0.4 vs. 1.4 ± 0.7, p = 0.05). CONCLUSION In a rabbit model at 12 weeks, the adhesion of MSCs to a FN-coated PU scaffold improves scaffold integration, proteoglycan production and the characteristics of the new meniscal-like tissue obtained when compared to a non-supplemented scaffold. This fact could be a major step toward improving the adhesion of the MSCs to meniscal scaffolds and, consequently, the obtention of better quality meniscal tissue.
Collapse
Affiliation(s)
- Raúl Torres-Claramunt
- Orthopaedic Department, Hospital del Mar, Universitat Autònoma Barcelona, Passeig Marítim de la Barceloneta 25-29, 08003, Barcelona, Spain.
- IMIM (Hospital del Mar Medical Research Institute), C/Dr. Aiguader 88, 08003, Barcelona, Spain.
- Orthopaedic Department, ICATME-Institut Universitari Quirón-Dexeus, Universitat Autònoma Barcelona, C/ Sabino de Arana 5-19, 08028, Barcelona, Spain.
| | - Santos Martínez-Díaz
- Orthopaedic Department, Hospital del Mar, Universitat Autònoma Barcelona, Passeig Marítim de la Barceloneta 25-29, 08003, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), C/Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Juan F Sánchez-Soler
- Orthopaedic Department, Hospital del Mar, Universitat Autònoma Barcelona, Passeig Marítim de la Barceloneta 25-29, 08003, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), C/Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Laura Tio-Barrera
- IMIM (Hospital del Mar Medical Research Institute), C/Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Raquel Arredondo
- IMIM (Hospital del Mar Medical Research Institute), C/Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Laura Triginer
- IMIM (Hospital del Mar Medical Research Institute), C/Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Joan C Monllau
- IMIM (Hospital del Mar Medical Research Institute), C/Dr. Aiguader 88, 08003, Barcelona, Spain
| |
Collapse
|
8
|
Wang C, Stöckl S, Pattappa G, Schulz D, Hofmann K, Ilic J, Reinders Y, Bauer RJ, Sickmann A, Grässel S. Extracellular Vesicles Derived from Osteogenic-Differentiated Human Bone Marrow-Derived Mesenchymal Cells Rescue Osteogenic Ability of Bone Marrow-Derived Mesenchymal Cells Impaired by Hypoxia. Biomedicines 2023; 11:2804. [PMID: 37893177 PMCID: PMC10604262 DOI: 10.3390/biomedicines11102804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/22/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
In orthopedics, musculoskeletal disorders, i.e., non-union of bone fractures or osteoporosis, can have common histories and symptoms related to pathological hypoxic conditions induced by aging, trauma or metabolic disorders. Here, we observed that hypoxic conditions (2% O2) suppressed the osteogenic differentiation of human bone marrow-derived mesenchymal cells (hBMSC) in vitro and simultaneously increased reactive oxygen species (ROS) production. We assumed that cellular origin and cargo of extracellular vesicles (EVs) affect the osteogenic differentiation capacity of hBMSCs cultured under different oxygen pressures. Proteomic analysis revealed that EVs isolated from osteogenic differentiated hBMSC cultured under hypoxia (hypo-osteo EVs) or under normoxia (norm-osteo EVs) contained distinct protein profiles. Extracellular matrix (ECM) components, antioxidants and pro-osteogenic proteins were decreased in hypo-osteo EVs. The proteomic analysis in our previous study revealed that under normoxic culture conditions, pro-osteogenic proteins and ECM components have higher concentrations in norm-osteo EVs than in EVs derived from naïve hBMSCs (norm-naïve EVs). When selected for further analysis, five anti-hypoxic proteins were significantly upregulated (response to hypoxia) in norm-osteo EVs. Three of them are characterized as antioxidant proteins. We performed qRT-PCR to verify the corresponding gene expression levels in the norm-osteo EVs' and norm-naïve EVs' parent cells cultured under normoxia. Moreover, we observed that norm-osteo EVs rescued the osteogenic ability of naïve hBMSCs cultured under hypoxia and reduced hypoxia-induced elevation of ROS production in osteogenic differentiated hBMSCs, presumably by inducing expression of anti-hypoxic/ antioxidant and pro-osteogenic genes.
Collapse
Affiliation(s)
- Chenglong Wang
- Department of Orthopedic Surgery, Experimental Orthopedics, Center for Medical Biotechnology (ZMB), Biopark 1, University of Regensburg, 93053 Regensburg, Germany (K.H.)
| | - Sabine Stöckl
- Department of Orthopedic Surgery, Experimental Orthopedics, Center for Medical Biotechnology (ZMB), Biopark 1, University of Regensburg, 93053 Regensburg, Germany (K.H.)
| | - Girish Pattappa
- Department of Trauma Surgery, Center for Medical Biotechnology (ZMB), Biopark 1, University of Regensburg, 93053 Regensburg, Germany
| | - Daniela Schulz
- Department of Oral and Maxillofacial Surgery, Center for Medical Biotechnology (ZMB), Biopark 1, University Hospital Regensburg, 93053 Regensburg, Germany (R.J.B.)
| | - Korbinian Hofmann
- Department of Orthopedic Surgery, Experimental Orthopedics, Center for Medical Biotechnology (ZMB), Biopark 1, University of Regensburg, 93053 Regensburg, Germany (K.H.)
| | - Jovana Ilic
- IZKF Group Tissue Regeneration in Musculoskeletal Diseases, University Hospital & Bernhard-Heine-Centrum for Locomotion Research, University of Würzburg, 97070 Würzburg, Germany;
| | - Yvonne Reinders
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany; (Y.R.); (A.S.)
| | - Richard J. Bauer
- Department of Oral and Maxillofacial Surgery, Center for Medical Biotechnology (ZMB), Biopark 1, University Hospital Regensburg, 93053 Regensburg, Germany (R.J.B.)
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany; (Y.R.); (A.S.)
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
- Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen AB24 3FX, UK
| | - Susanne Grässel
- Department of Orthopedic Surgery, Experimental Orthopedics, Center for Medical Biotechnology (ZMB), Biopark 1, University of Regensburg, 93053 Regensburg, Germany (K.H.)
| |
Collapse
|
9
|
Dabaghi M, Eras V, Kaltenhaeuser D, Ahmed N, Wildemann B. Allografts for partial meniscus repair: an in vitro and ex vivo meniscus culture study. Front Bioeng Biotechnol 2023; 11:1268176. [PMID: 37901839 PMCID: PMC10603185 DOI: 10.3389/fbioe.2023.1268176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/11/2023] [Indexed: 10/31/2023] Open
Abstract
The purpose of this study was to evaluate the treatment potential of a human-derived demineralized scaffold, Spongioflex® (SPX), in partial meniscal lesions by employing in vitro models. In the first step, the differentiation potential of human meniscal cells (MCs) was investigated. In the next step, the ability of SPX to accommodate and support the adherence and/or growth of MCs while maintaining their fibroblastic/chondrocytic properties was studied. Control scaffolds, including bovine collagen meniscus implant (CMI) and human meniscus allograft (M-Allo), were used for comparison purposes. In addition, the migration tendency of MCs from fresh donor meniscal tissue into SPX was investigated in an ex vivo model. The results showed that MCs cultured in osteogenic medium did not differentiate into osteogenic cells or form significant calcium phosphate deposits, although AP activity was relatively increased in these cells. Culturing cells on the scaffolds revealed increased viability on SPX compared to the other scaffold materials. Collagen I synthesis, assessed by ELISA, was similar in cells cultured in 2D and on SPX. MCs on micro-porous SPX (weight >0.5 g/cm3) exhibited increased osteogenic differentiation indicated by upregulated expression of ALP and RUNX2, while also showing upregulated expression of the chondrogen-specific SOX9 and ACAN genes. Ingrowth of cells on SPX was observed after 28 days of cultivation. Overall, the results suggest that SPX could be a promising biocompatible scaffold for meniscal regeneration.
Collapse
Affiliation(s)
- Mohammad Dabaghi
- Experimental Trauma Surgery, Department of Trauma, Hand and Reconstructive Surgery, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Volker Eras
- German Institute for Cell and Tissue Replacement (DIZG, gemeinnützige GmbH), Berlin, Germany
| | - Daniel Kaltenhaeuser
- German Institute for Cell and Tissue Replacement (DIZG, gemeinnützige GmbH), Berlin, Germany
| | - Norus Ahmed
- German Institute for Cell and Tissue Replacement (DIZG, gemeinnützige GmbH), Berlin, Germany
| | - Britt Wildemann
- Experimental Trauma Surgery, Department of Trauma, Hand and Reconstructive Surgery, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
10
|
Barceló X, Eichholz KF, Gonçalves IF, Garcia O, Kelly DJ. Bioprinting of structurally organized meniscal tissue within anisotropic melt electrowritten scaffolds. Acta Biomater 2023; 158:216-227. [PMID: 36638941 DOI: 10.1016/j.actbio.2022.12.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023]
Abstract
The meniscus is characterised by an anisotropic collagen fibre network which is integral to its biomechanical functionality. The engineering of structurally organized meniscal grafts that mimic the anisotropy of the native tissue remains a significant challenge. In this study, inkjet bioprinting was used to deposit a cell-laden bioink into additively manufactured scaffolds of differing architectures to engineer fibrocartilage grafts with user defined collagen architectures. Polymeric scaffolds consisting of guiding fibre networks with varying aspect ratios (1:1; 1:4; 1:16) were produced using either fused deposition modelling (FDM) or melt electrowriting (MEW), resulting in scaffolds with different internal architectures and fibre diameters. Scaffold architecture was found to influence the spatial organization of the collagen network laid down by the jetted cells, with higher aspect ratios (1:4 and 1:16) supporting the formation of structurally anisotropic tissues. The MEW scaffolds supported the development of a fibrocartilaginous tissue with compressive mechanical properties similar to that of native meniscus, while the anisotropic tensile properties of these constructs could be tuned by altering the fibre network aspect ratio. This MEW framework was then used to generate scaffolds with spatially distinct fibre patterns, which in turn supported the development of heterogenous tissues consisting of isotropic and anisotropic collagen networks. Such bioprinted tissues could potentially form the basis of new treatment options for damaged and diseased meniscal tissue. STATEMENT OF SIGNIFICANCE: This study describes a multiple tool biofabrication strategy which enables the engineering of spatially organized fibrocartilage tissues. The architecture of MEW scaffolds can be tailored to not only modulate the directionality of the collagen fibres laid down by cells, but also to tune the anisotropic tensile mechanical properties of the resulting constructs, thereby enabling the engineering of biomimetic meniscal-like tissues. Furthermore, the inherent flexibility of MEW enables the development of zonally defined and potentially patient-specific implants.
Collapse
Affiliation(s)
- Xavier Barceló
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, D02 R590, Ireland; Department of Mechanical, Manufacturing, & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, D02 R590, Ireland; Advanced Materials & Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland & Trinity College Dublin, Dublin, D02 F6N2, Ireland
| | - Kian F Eichholz
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, D02 R590, Ireland; Department of Mechanical, Manufacturing, & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, D02 R590, Ireland; Advanced Materials & Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland & Trinity College Dublin, Dublin, D02 F6N2, Ireland
| | - Inês F Gonçalves
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, D02 R590, Ireland; Department of Mechanical, Manufacturing, & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, D02 R590, Ireland; Advanced Materials & Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland & Trinity College Dublin, Dublin, D02 F6N2, Ireland
| | - Orquidea Garcia
- Johnson & Johnson 3D Printing Innovation & Customer Solutions, Johnson & Johnson Services, Inc., Irvine, CA, USA
| | - Daniel J Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, D02 R590, Ireland; Department of Mechanical, Manufacturing, & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, D02 R590, Ireland; Advanced Materials & Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland & Trinity College Dublin, Dublin, D02 F6N2, Ireland; Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland.
| |
Collapse
|
11
|
Wang J, Roberts S, Li W, Wright K. Phenotypic characterization of regional human meniscus progenitor cells. Front Bioeng Biotechnol 2022; 10:1003966. [PMID: 36338137 PMCID: PMC9629835 DOI: 10.3389/fbioe.2022.1003966] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/28/2022] [Indexed: 10/31/2023] Open
Abstract
Stimulating meniscus regeneration using meniscal progenitor cells has been suggested as a promising new strategy. However, there is a lack of studies which decisively identify and characterize progenitor cell populations in human meniscus tissues. In this study, donor-matched progenitor cells were isolated via selective fibronectin adhesion from the avascular and vascular regions of the meniscus and chondroprogenitors from articular cartilage (n = 5). The mixed populations of cells from these regions were obtained by standard isolation techniques for comparison. The colony formation efficacy of avascular progenitors, vascular progenitors and chondroprogenitors was monitored using Cell-IQ® live cell imaging. Proliferation rates of progenitors were compared with their mixed population counterparts. Cell surface markers indicative of mesenchymal stromal cells profile and progenitor markers were characterized by flow cytometry in all populations. The fibrochondrogenic capacity was assessed via fibrochondrogenic differentiation and measuring GAG/DNA content and morphology. All meniscal progenitor and chondroprogenitor populations showed superior colony forming efficacy and faster proliferation rates compare to their mixed populations. Progenitor populations showed significantly higher positivity for CD49b and CD49c compared to their mixed population counterparts and chondroprogenitors had a higher positivity level of CD166 compared to mixed chondrocytes. GAG/DNA analysis demonstrated that progenitor cells generally produced more GAG than mixed populations. Our study demonstrates that the human meniscus contains meniscal progenitor populations in both the avascular and vascular regions. Meniscal progenitors derived from the vascular region exhibit enhanced proliferative and fibrochondrogenic characteristics compared to those from the avascular region; this may associate with the enhanced meniscal healing potential in the vascular region. These findings build on the body of evidence which suggests that meniscal progenitors represent an attractive cell therapy strategy for meniscal regeneration.
Collapse
Affiliation(s)
- Jingsong Wang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Spinal Studies & Cartilage Research Group, Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Trust, Oswestry, United Kingdom
- School of Pharmacy and Bioengineering, Keele University, Staffordshire, United Kingdom
| | - Sally Roberts
- Spinal Studies & Cartilage Research Group, Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Trust, Oswestry, United Kingdom
- School of Pharmacy and Bioengineering, Keele University, Staffordshire, United Kingdom
| | - Weiping Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Karina Wright
- Spinal Studies & Cartilage Research Group, Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Trust, Oswestry, United Kingdom
- School of Pharmacy and Bioengineering, Keele University, Staffordshire, United Kingdom
| |
Collapse
|