1
|
Pappa CP, Cailotto S, Gigli M, Crestini C, Triantafyllidis KS. Kraft (Nano)Lignin as Reactive Additive in Epoxy Polymer Bio-Composites. Polymers (Basel) 2024; 16:553. [PMID: 38399931 PMCID: PMC10893208 DOI: 10.3390/polym16040553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
The demand for high-performance bio-based materials towards achieving more sustainable manufacturing and circular economy models is growing significantly. Kraft lignin (KL) is an abundant and highly functional aromatic/phenolic biopolymer, being the main side product of the pulp and paper industry, as well as of the more recent 2nd generation biorefineries. In this study, KL was incorporated into a glassy epoxy system based on the diglycidyl ether of bisphenol A (DGEBA) and an amine curing agent (Jeffamine D-230), being utilized as partial replacement of the curing agent and the DGEBA prepolymer or as a reactive additive. A D-230 replacement by pristine (unmodified) KL of up to 14 wt.% was achieved while KL-epoxy composites with up to 30 wt.% KL exhibited similar thermo-mechanical properties and substantially enhanced antioxidant properties compared to the neat epoxy polymer. Additionally, the effect of the KL particle size was investigated. Ball-milled kraft lignin (BMKL, 10 μm) and nano-lignin (NLH, 220 nm) were, respectively, obtained after ball milling and ultrasonication and were studied as additives in the same epoxy system. Significantly improved dispersion and thermo-mechanical properties were obtained, mainly with nano-lignin, which exhibited fully transparent lignin-epoxy composites with higher tensile strength, storage modulus and glass transition temperature, even at 30 wt.% loadings. Lastly, KL lignin was glycidylized (GKL) and utilized as a bio-based epoxy prepolymer, achieving up to 38 wt.% replacement of fossil-based DGEBA. The GKL composites exhibited improved thermo-mechanical properties and transparency. All lignins were extensively characterized using NMR, TGA, GPC, and DLS techniques to correlate and justify the epoxy polymer characterization results.
Collapse
Affiliation(s)
- Christina P. Pappa
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Simone Cailotto
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, 30170 Venice Mestre, Italy (C.C.)
| | - Matteo Gigli
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, 30170 Venice Mestre, Italy (C.C.)
| | - Claudia Crestini
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, 30170 Venice Mestre, Italy (C.C.)
| | - Konstantinos S. Triantafyllidis
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece
| |
Collapse
|
2
|
Chen M, Li Y, Liu H, Zhang D, Shi QS, Zhong XQ, Guo Y, Xie XB. High value valorization of lignin as environmental benign antimicrobial. Mater Today Bio 2023; 18:100520. [PMID: 36590981 PMCID: PMC9800644 DOI: 10.1016/j.mtbio.2022.100520] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Lignin is a natural aromatic polymer of p-hydroxyphenylpropanoids with various biological activities. Noticeably, plants have made use of lignin as biocides to defend themselves from pathogen microbial invasions. Thus, the use of isolated lignin as environmentally benign antimicrobial is believed to be a promising high value approach for lignin valorization. On the other hand, as green and sustainable product of plant photosynthesis, lignin should be beneficial to reduce the carbon footprint of antimicrobial industry. There have been many reports that make use of lignin to prepare antimicrobials for different applications. However, lignin is highly heterogeneous polymers different in their monomers, linkages, molecular weight, and functional groups. The structure and property relationship, and the mechanism of action of lignin as antimicrobial remains ambiguous. To show light on these issues, we reviewed the publications on lignin chemistry, antimicrobial activity of lignin models and isolated lignin and associated mechanism of actions, approaches in synthesis of lignin with improved antimicrobial activity, and the applications of lignin as antimicrobial in different fields. Hopefully, this review will help and inspire researchers in the preparation of lignin antimicrobial for their applications.
Collapse
Affiliation(s)
- Mingjie Chen
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Yan Li
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Huiming Liu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Dandan Zhang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Qing-Shan Shi
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Xin-Qi Zhong
- Department of Neonatology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Yanzhu Guo
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Xiao-Bao Xie
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| |
Collapse
|
3
|
Argenziano R, Moccia F, Esposito R, D’Errico G, Panzella L, Napolitano A. Recovery of Lignins with Potent Antioxidant Properties from Shells of Edible Nuts by a Green Ball Milling/Deep Eutectic Solvent (DES)-Based Protocol. Antioxidants (Basel) 2022; 11:antiox11101860. [PMID: 36290583 PMCID: PMC9598286 DOI: 10.3390/antiox11101860] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/25/2022] Open
Abstract
Lignins are phenolic polymers endowed with potent antioxidant properties that are finding increasing applications in a variety of fields. Consequently, there is a growing need for easily available and sustainable sources, as well as for green extraction methodologies of these compounds. Herein, a ball milling/deep eutectic solvent (DES)-based treatment is reported as an efficient strategy for the recovery of antioxidant lignins from the shells of edible nuts, namely chestnuts, hazelnuts, peanuts, pecan nuts, and pistachios. In particular, preliminarily ball-milled shells were treated with 1:2 mol/mol choline chloride:lactic acid at 120 °C for 24 h, and the extracted material was recovered in 19–27% w/w yields after precipitation by the addition of 0.01 M HCl. Extensive spectroscopic and chromatographic analysis allowed for confirmation that the main phenolic constituents present in the shell extracts were lignins, accompanied by small amounts (0.9% w/w) of ellagic acid, in the case of chestnut shells. The recovered samples exhibited very promising antioxidant properties, particularly in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay (EC50 values ranging from 0.03 to 0.19 mg/mL). These results open new perspectives for the valorization of nut shells as green sources of lignins for applications as antioxidants, e.g., in the biomedical, food, and/or cosmetic sector.
Collapse
|
4
|
Su Y, Fang L, Wang P, Lai C, Huang C, Ling Z, Yong Q. Coproduction of xylooligosaccharides and monosaccharides from hardwood by a combination of acetic acid pretreatment, mechanical refining and enzymatic hydrolysis. BIORESOURCE TECHNOLOGY 2022; 358:127365. [PMID: 35618187 DOI: 10.1016/j.biortech.2022.127365] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Sequential biorefinery treatments of acetic acid (HAC) pretreatment, Papir Forsknings Institutet (PFI) milling and enzymatic hydrolysis were demonstrated for coproduction of xylooligosaccharides (XOS) and fermentable monosaccharides. Results indicated that 36.2% XOS (50.8% X2-X3) and 17.0% low DP xylans were achieved using a HAC pretreatment with a combined severity factor of 0.78. The HAC pretreatment resulted in a XOS-rich prehydrolyzate with a low molecular weight of 1.28 kDa. The endo-xylanase hydrolysis was conducted on the pretreatment liquor to elevate XOS yield and the content of higher-value X2-X3. Moreover, fermentable glucose production from the pretreated residue increased by 2.3 folds when introducing an additional step of PFI refining prior to enzymatic digestion. Properties of substrate including cellulose accessibility, crystallite size, crystalline index and water retention value were in close relationships with enzymatic digestibility. The implementation of proposed biorefinery process will give more insights into the efficient construction of a wood-derived sugar platform.
Collapse
Affiliation(s)
- Yan Su
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Lingyan Fang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Peng Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Chenhuan Lai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China
| | - Zhe Ling
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Qiang Yong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China.
| |
Collapse
|
5
|
Arce C, Kratky L. Mechanical pretreatment of lignocellulosic biomass toward enzymatic/fermentative valorization. iScience 2022; 25:104610. [PMID: 35789853 PMCID: PMC9250023 DOI: 10.1016/j.isci.2022.104610] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Lignocellulosic biomass (LCB) has the potential to replace fossil fuels, thanks to the concept of biorefinery. This material is formed mainly by cellulose, lignin, and hemicellulose. To maximize the valorization potential of this material, LCB needs to be pretreated. Milling is always performed before any other treatments. It does not produce chemical change and improves the efficiency of the upcoming processes. Additionally, it makes LCB easier to handle and increases bulk density and transfer phenomena of the next pretreatment step. However, this treatment is energy consuming, so it needs to be optimized. Several mills can be used, and the equipment selection depends on the characteristics of the material, the final size required, and the operational regime: continuous or batch. Among them, ball, knife, and hammer mills are the most used at the laboratory scale, especially before enzymatic or fermentative treatments. The continuous operational regime (knife and hammer mill) allows us to work with high volumes of raw material and can continuously reduce particle size, unlike the batch operating regime (ball mill). This review recollects the information about the application of these machines, the effect on particle size, and subsequent treatments. On the one hand, ball milling reduced particle size the most; on the other hand, hammer and knife milling consumed less energy. Furthermore, the latter reached a small final particle size (units of millimeters) suitable for valorization.
Collapse
|
6
|
Pei W, Deng J, Wang P, Wang X, Zheng L, Zhang Y, Huang C. Sustainable lignin and lignin-derived compounds as potential therapeutic agents for degenerative orthopaedic diseases: A systemic review. Int J Biol Macromol 2022; 212:547-560. [PMID: 35643155 DOI: 10.1016/j.ijbiomac.2022.05.152] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/13/2022] [Accepted: 05/22/2022] [Indexed: 12/12/2022]
Abstract
Lignin, the most abundant natural and sustainable phenolic compound in biomass, has exhibited medicinal values due to its biological activities decided by physicochemical properties. Recently, the lignin and its derivatives (such as lignosulfonates and lignosulfonate) have been proven efficient in regulating cellular process and the extracellular microenvironment, which has been regarded as the key factor in disease progression. In orthopaedic diseases, especially the degenerative diseases represented by osteoarthritis and osteoporosis, excessive activated inflammation has been proven as a key stage in the pathological process. Due to the excellent biocompatibility, antibacterial and antioxidative activities of lignin and its derivatives, they have been applied to stimulate cells and restore the uncoupling bone remodeling in the degenerative orthopaedic diseases. However, there is a lack of a systemic review to state the current research actuality of lignin and lignin-derived compounds in treating degenerative orthopaedic diseases. Herein, we summarized the current application of lignin and lignin-derived compounds in orthopaedic diseases and proposed their possible therapeutic mechanism in treating degenerative orthopaedic diseases. It is hoped this work could guide the future preparation of lignin/lignin-derived drugs and implants as available therapeutic strategies for clinically degenerative orthopaedic diseases.
Collapse
Affiliation(s)
- Wenhui Pei
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Junping Deng
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Peng Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Xucai Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Liming Zheng
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.
| | - Yangheng Zhang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China.
| | - Caoxing Huang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
7
|
A Value-Added Utilization Method of Sugar Production By-Products from Rice Straw: Extraction of Lignin and Evaluation of Its Antioxidant Activity. Processes (Basel) 2022. [DOI: 10.3390/pr10061210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
To value-added utilization of the rice straw, two types of lignin were extracted from the by-products of sugar production. The ether-extracted lignin with a purity of 98.7% was extracted from the pretreatment filtrate with two times the concentrated filtrate volume of ether, where the lignin yield was 6.62 mg/g of the rice straw. The ball-milled lignin with a purity of 99.6% was extracted from the milled enzymatic hydrolysis residue with a 1,4-dioxane solution, where the revolution speed and grinding time were 300 rpm and 12 h, respectively. The yield of ball-milled lignin was 34.52 mg/g of the rice straw, which was 421.5% higher than that extracted from extract-free rice straw. In the process of rice straw pretreatment and lignin extraction, 76.43% by mass of phosphotungstic acid catalyst and approximately 98% by volume of 1,4-dioxane solution could be recycled and reused. Compared with the soda lignin extracted from papermaking black liquor, the scavenging rates of DPPH radical and ABTS+ radical of ether-extracted lignin increased by 36.26% and 41.18%, respectively, while the above scavenging rates of ball-milled lignin increased by 30.22% and 37.75%, respectively. Moreover, the reducing power of the two extracted lignins was also stronger than that of soda lignin. The ether-extracted lignin and ball-milled lignin have the potential to be developed as natural macromolecular antioxidants.
Collapse
|
8
|
Liao W, Lu J, Wang Q, Yan S, Li Y, Zhang Y, Wang P, Jiang Q, Gu N. Osteogenesis of Iron Oxide Nanoparticles-Labeled Human Precartilaginous Stem Cells in Interpenetrating Network Printable Hydrogel. Front Bioeng Biotechnol 2022; 10:872149. [PMID: 35573235 PMCID: PMC9099245 DOI: 10.3389/fbioe.2022.872149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/05/2022] [Indexed: 01/22/2023] Open
Abstract
Smart biomaterials combined with stem cell-based therapeutic strategies have brought innovation in the field of bone tissue regeneration. However, little is known about precartilaginous stem cells (PCSCs), which can be used as seed cells and incorporated with bioactive scaffolds for reconstructive tissue therapy of bone defects. Herein, iron oxide nanoparticles (IONPs) were employed to modulate the fate of PCSCs, resulting in the enhanced osteogenic differentiation potential both in vitro and in vivo. PCSCs were isolated from the ring of La-Croix extracted from polydactylism patient and identified through immunohistochemically staining using anti-FGFR-3 antibodies. Potential toxicity of IONPs toward PCSCs was assessed through cell viability, proliferation, and attachment assay, and the results demonstrated that IONPs exhibited excellent biocompatibility. After that, the effects of IONPs on osteogenic differentiation of PCSCs were evaluated and enhanced ALP activity, formation of mineralized nodule, and osteogenic-related genes expressions could be observed upon IONPs treatment. Moreover, in vivo bone regeneration assessment was performed using rabbit femur defects as a model. A novel methacrylated alginate and 4-arm poly (ethylene glycol)-acrylate (4A-PEGAcr)-based interpenetrating polymeric printable network (IPN) hydrogel was prepared for incorporation of IONPs-labeled PCSCs, where 4A-PEGAcr was the common component for three-dimensional (3D) printing. The implantation of IONPs-labeled PCSCs significantly accelerated the bone formation process, indicating that IONPs-labeled PCSCs could endow current scaffolds with excellent osteogenic ability. Together with the fact that the IONPs-labeled PCSCs-incorporated IPN hydrogel (PCSCs-hydrogels) was biosafety and printable, we believed that PCSCs-hydrogels with enhanced osteogenic bioactivity could enrich the stem cell-based therapeutic strategies for bone tissue regeneration.
Collapse
Affiliation(s)
- Wei Liao
- Children’s Hospital of Nanjing Medical University, Nanjing, China
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Jingwei Lu
- Department of Orthopedics, Jinling School of Clinical Medicine, Nanjing Medical University, Jinling Hospital, Nanjing, China
| | - Qianjin Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Sen Yan
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, China
| | - Yan Li
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, China
| | - Yibo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Peng Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- *Correspondence: Qing Jiang, ; Ning Gu,
| | - Ning Gu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, China
- *Correspondence: Qing Jiang, ; Ning Gu,
| |
Collapse
|