1
|
Ming J, Ni SQ, Guo Z, Wang ZB, Xie L. Photocatalytic material-microorganism hybrid systems in water decontamination. Trends Biotechnol 2025; 43:1031-1047. [PMID: 39645524 DOI: 10.1016/j.tibtech.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 10/05/2024] [Accepted: 11/13/2024] [Indexed: 12/09/2024]
Abstract
Biological processes are widely used technologies for water decontamination, but they are often limited by insufficient bioavailable carbon sources or biorecalcitrant contaminants. The recently developed photocatalytic material-microorganism hybrid (PMH) system combines the light-harvesting capacities of photocatalytic materials with specific enzymatic activities of whole cells, efficiently achieving solar-to-chemical conversion. By integrating the benefits of both photocatalysis and biological processes, the PMH system shows great potential for water decontamination. While recent reviews have focused primarily on its application in green energy development, this review emphasizes the latest advancements in PMH systems for water decontamination, covering various applications, key considerations, and synergistic mechanisms. This review aims to provide a fundamental understanding of the PMH system and explore its broader potential in environmental remediation.
Collapse
Affiliation(s)
- Jie Ming
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Shou-Qing Ni
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China.
| | - Ziyu Guo
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Zhi-Bin Wang
- School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
| | - Liangke Xie
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| |
Collapse
|
2
|
Gallegos-Cerda SD, Hernández-Varela JD, Chanona Pérez JJ, Huerta-Aguilar CA, González Victoriano L, Arredondo-Tamayo B, Reséndiz Hernández O. Development of a low-cost photocatalytic aerogel based on cellulose, carbon nanotubes, and TiO 2 nanoparticles for the degradation of organic dyes. Carbohydr Polym 2024; 324:121476. [PMID: 37985080 DOI: 10.1016/j.carbpol.2023.121476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/25/2023] [Accepted: 10/08/2023] [Indexed: 11/22/2023]
Abstract
A hybrid ultra-light and porous cellulose aerogel was prepared by extracting cellulose fibers from white paper, alkali/urea as a crosslinker agent, and functionalized with CNTs and pure anatase TiO2 nanoparticles. Since CNTs work as mechanical reinforcement for aerogels, physical and mechanical properties were measured. Besides, since TiO2 acts as a photocatalyst for degrading dyes (rhodamine B and methylene blue), UV-Vis spectroscopy under UV light, visible light, and darkroom was used to evaluate the degradation process. XRD, FTIR, and TGA were employed to characterize the structural and thermal properties of the composite. The nanostructured solid network of aerogels was visualized in SEM microscopy confirming the structural uniformity of cellulose and TiO2-CNTs onto fibers. Moreover, CLSM was used to study the nano-porous network distribution of cellulose fibers and porosity, and the functionalization process in a detailed way. Finally, the photocatalytic activity of aerogels was evaluated by degradation of dye aqueous solutions, with the best photocatalytic removal (>97 %) occurring after 110 min of UV irradiation. In addition, HPLC-MS facilitated the proposed mechanism for the degradation of dyes. These results confirm that cellulose aerogels coupled with nanomaterials enable the creation of economic support to reduce water pollution with higher decontamination rates.
Collapse
Affiliation(s)
- Susana Dianey Gallegos-Cerda
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, 07738 Mexico City, Mexico
| | - Josué David Hernández-Varela
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, 07738 Mexico City, Mexico
| | - José Jorge Chanona Pérez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, 07738 Mexico City, Mexico.
| | | | - Lizbeth González Victoriano
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, 07738 Mexico City, Mexico
| | - Benjamín Arredondo-Tamayo
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, 07738 Mexico City, Mexico; Universidad Tecnológica de México, Campus Marina-Cuitláhuac, San Salvador Xochimanca, Azcapotzalco, 02870 Mexico City, Mexico
| | - Omar Reséndiz Hernández
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Instituto Politécnico Nacional, Av. Legaría, Irrigación, 11500 Mexico City, Mexico
| |
Collapse
|
3
|
Recent Advances In Microbe-Photocatalyst Hybrid Systems for Production of Bulk Chemicals: A Review. Appl Biochem Biotechnol 2023; 195:1574-1588. [PMID: 36346559 DOI: 10.1007/s12010-022-04169-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 11/11/2022]
Abstract
Solar-driven biocatalysis technologies can combine inorganic photocatalytic materials with biological catalysts to convert CO2, light, and water into chemicals, offering the promise of high energy efficiency and a broader product scope than that of natural photosynthesis. Solar energy is the most abundant renewable energy source on earth, but it cannot be directly utilized by current industrial microorganisms. Therefore, the establishment of a solar-driven bio-catalysis platform, a bridge between solar energy and heterotrophic microorganisms, can dramatically increase carbon flux in biomanufacturing systems and consequently may revolutionize the biorefinery. This review first discusses the main applications of microbe-photocatalyst hybrid (MPH) systems in biorefinery processes. Then, various strategies to improve the electron transfer by microorganisms at the inorganic photocatalytic material interface are discussed, especially biohybrid systems based on autotrophic or heterotrophic bacteria and photocatalytic materials. Finally, we discuss the current challenges and offer potential solutions for the development of MPH systems.
Collapse
|