1
|
Hawary H, Marwa AKM, Rasmey AHM. Kinetic modeling and optimization of ethanol fermentation by the marine yeast Wickerhamomyces subpelliculosus ZE75. World J Microbiol Biotechnol 2024; 40:155. [PMID: 38581587 PMCID: PMC10998816 DOI: 10.1007/s11274-024-03942-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/25/2024] [Indexed: 04/08/2024]
Abstract
The study aims to enhance ethanol production by Wickerhamomyces subpelliculosus ZE75 isolated from marine sediment. In addition, analyzing the kinetic parameters of ethanol production and optimization of the fermentation conditions was performed. The marine yeast isolate ZE75 was selected as the front runner ethanol-producer, with an ethanol yield of 89.77 gL-1. ZE75 was identified relying on the phenotypic and genotypic characteristics of W. subpelliculosus. The genotypic characterization based on the Internal Transcribed Spacer (ITS) sequence was deposited in the GenBank database with the accession number OP715873. The maximum specific ethanol production rate (vmax) was 0.482 gg-1 h-1 at 175 gL-1 glucose concentration, with a high accuracy of R2 0.95. The maximum growth specific rates (μmax) were 0.141 h-1 obtained at 150 gL-1 glucose concentration with R2 0.91. Optimization of the fermentation parameters such as pH and salinity has been achieved. The highest ethanol yield 0.5637 gg-1 was achieved in a 100% natural seawater-based medium. The maximum ethanol production of 104.04 gL-1 was achieved at pH 4.5 with a specific ethanol rate of 0.1669 gg-1 h-1. The findings of the present study recommend the possibility of ethanol production from a seawater-based medium on a large scale using W. subpelliculosus ZE75.
Collapse
Affiliation(s)
- Heba Hawary
- Botany and Microbiology Department, Faculty of Science, Suez University, Suez, 43221, Egypt.
| | - Abdel-Kareem M Marwa
- Botany and Microbiology Department, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Abdel-Hamied M Rasmey
- Botany and Microbiology Department, Faculty of Science, Suez University, Suez, 43221, Egypt
| |
Collapse
|
2
|
Moenaert A, Bjornsdottir B, Haraldsson EB, Allahgholi L, Zieri A, Zangl I, Sigurðardóttir S, Örlygsson J, Nordberg Karlsson E, Friðjónsson ÓH, Hreggviðsson GÓ. Metabolic engineering of Thermoanaerobacterium AK17 for increased ethanol production in seaweed hydrolysate. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:135. [PMID: 37697400 PMCID: PMC10496261 DOI: 10.1186/s13068-023-02388-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/01/2023] [Indexed: 09/13/2023]
Abstract
Sustainably produced renewable biomass has the potential to replace fossil-based feedstocks, for generation of biobased fuels and chemicals of industrial interest, in biorefineries. In this context, seaweeds contain a large fraction of carbohydrates that are a promising source for enzymatic and/or microbial biorefinery conversions. The thermoanaerobe Thermoanaerobacterium AK17 is a versatile fermentative bacterium producing ethanol, acetate and lactate from various sugars. In this study, strain AK17 was engineered for more efficient production of ethanol by knocking out the lactate and acetate side-product pathways. This was successfully achieved, but the strain reverted to acetate production by recruiting enzymes from the butyrate pathway. Subsequently this pathway was knocked out and the resultant strain AK17_M6 could produce ethanol close to the maximum theoretical yield (90%), leading to a 1.5-fold increase in production compared to the wild-type strain. Strain AK17 was also shown to successfully ferment brown seaweed hydrolysate from Laminaria digitata to ethanol in a comparatively high yield of 0.45 g/g substrate, with the primary carbon sources for the fermentations being mannitol, laminarin-derived glucose and short laminari-oligosaccharides. As strain AK17 was successfully engineered and has a wide carbohydrate utilization range that includes mannitol from brown seaweed, as well as hexoses and pentoses found in both seaweeds and lignocellulose, the new strain AK17_M6 obtained in this study is an interesting candidate for production of ethanol from both second and third generations biomass.
Collapse
Affiliation(s)
- Antoine Moenaert
- Department of Biotechnology, Matís Ohf, Reykjavík, Iceland.
- Faculty of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland.
| | | | - Einar Baldvin Haraldsson
- Department of Biotechnology, Matís Ohf, Reykjavík, Iceland
- Faculty of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
| | - Leila Allahgholi
- Biotechnology, Department of Chemistry, Lund University, Lund, Sweden
| | - Anna Zieri
- IMC University of Applied Sciences Krems, Krems, Austria
| | - Isabella Zangl
- IMC University of Applied Sciences Krems, Krems, Austria
| | | | - Jóhann Örlygsson
- Faculty of Natural Resource Sciences, University of Akureyri, Akureyri, Iceland
| | | | - Ólafur H Friðjónsson
- Department of Biotechnology, Matís Ohf, Reykjavík, Iceland
- Faculty of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
| | - Guðmundur Óli Hreggviðsson
- Department of Biotechnology, Matís Ohf, Reykjavík, Iceland
- Faculty of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
| |
Collapse
|