1
|
Wang Y, Zhang C, Zhao Y, Wu F, Yue Y, Zhang Y, Li D. Ultrasound-assisted optimization extraction and biological activities analysis of flavonoids from Sanghuangporus sanghuang. ULTRASONICS SONOCHEMISTRY 2025; 117:107326. [PMID: 40245637 PMCID: PMC12020841 DOI: 10.1016/j.ultsonch.2025.107326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 01/09/2025] [Accepted: 03/21/2025] [Indexed: 04/19/2025]
Abstract
The fungus Sanghuangporus sanghuang possesses notable medicinal and edible characteristics, displaying a diverse array of biological functionalities. This research endeavor seeks to investigate the procedure of extracting flavonoids from S. sanghuang, and the qualitative and quantitative analysis of flavonoids extraction from S. sanghuang using ultra-performance liquid chromatography (UPLC), and assess its antioxidant capacity and potential antiproliferative properties. The ultrasonic-assisted extraction resulted in a 2.34-fold increase compared to the hot water extraction method. Response surface methodology (RSM) was employed to enhance the extraction process of flavonoids from S. sanghuang. The results indicated that the optimal extraction rate of S. sanghuang flavonoids were achieved at 16.16 ± 0.12 %. This was attained at an ultrasound temperature of 50°C using 80 % ethanol concentration and an ultrasound extraction time of 60 min. The S. sanghuang extract was analyzed using UPLC, resulting in the identification of twenty-six distinct compounds. The flavonoids derived from S. sanghuang have demonstrated the ability to effectively scavenge DPPH, superoxide anions (O2-·), and hydroxyl free radicals (·OH), in addition to exhibiting ferric reducing power. Furthermore, it exhibited inhibitory effects on α-glucosidase. The Pearson correlation analysis revealed a statistically significant positive correlation between the antioxidant capacities, encompassing DPPH, O2-·, ·OH, ferric reducing power, and the inhibited α-glucosidase capability. It has been determined that the activity of α-glucosidase can be inhibited by S. sanghuang flavonoids, and this inhibition can be predicted using a model developed with the MATLAB program. In the current investigation, the study successfully demonstrated the inhibitory effects of S. sanghuang flavonoids on cell proliferation and migration in glioma cells. This was achieved through the analysis of CCK-8 assay and wound healing assay, with statistical significance observed (p < 0.05).
Collapse
Affiliation(s)
- Yanhua Wang
- China-UK International Joint Laboratory for Insect Biology of Henan Province, School of Life Science, Nanyang Normal University, Henan Province, China; Henan Engineering Technology Research Center for Mushroom-based Foods, Nanyang Normal University, Nanyang City, Henan Province, China.
| | - Chen Zhang
- School of Life Science, Nanyang Normal University, China
| | - Yilin Zhao
- School of Life Science, Nanyang Normal University, China
| | - Fuhua Wu
- School of Water Resources and Modern Agriculture, Nanyang Normal University, Henan Province, China.
| | - Yaoli Yue
- China-UK International Joint Laboratory for Insect Biology of Henan Province, School of Life Science, Nanyang Normal University, Henan Province, China
| | - Yingjun Zhang
- Henan Engineering Technology Research Center for Mushroom-based Foods, Nanyang Normal University, Nanyang City, Henan Province, China; School of Water Resources and Modern Agriculture, Nanyang Normal University, Henan Province, China
| | - Dandan Li
- China-UK International Joint Laboratory for Insect Biology of Henan Province, School of Life Science, Nanyang Normal University, Henan Province, China.
| |
Collapse
|
2
|
Wang L, Li T, Wu C, Fan G, Zhou D, Li X. Unlocking the potential of plant polyphenols: advances in extraction, antibacterial mechanisms, and future applications. Food Sci Biotechnol 2025; 34:1235-1259. [PMID: 40110409 PMCID: PMC11914671 DOI: 10.1007/s10068-024-01727-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 03/22/2025] Open
Abstract
Plant polyphenols are widely distributed in most higher plants, garnering significant attention from researchers due to their remarkable antioxidative, antibacterial, anticancer, and anti-radiation properties. They also offer multiple health benefits for various lifestyle-related diseases and oxidative stress. While there has been considerable research on the extraction and antibacterial application of plant polyphenols, developing a rapid and efficient extraction method remains a persistent challenge. Furthermore, the introduction of novel technologies is imperative to enhance the bioavailability of polyphenolic compounds. This comprehensive review synthesizes recent research findings pertaining to the extraction, antibacterial mechanisms, and applications of plant polyphenols. This research highlights the prevalent issues of low extraction rates of plant polyphenols and the ambiguous antibacterial mechanisms in current research. To address these challenges, this research proposes innovative directions for improving extraction technology and expanding antibacterial applications. Additionally, this review outlines promising future research avenues within the realm of plant polyphenols. Graphical abstract
Collapse
Affiliation(s)
- Lei Wang
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, No.159 Long pan Road, Nanjing, 210037 Jiangsu People's Republic of China
| | - Tingting Li
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, No.159 Long pan Road, Nanjing, 210037 Jiangsu People's Republic of China
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Long pan Road, Nanjing, 210037 Jiangsu People's Republic of China
| | - Caie Wu
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, No.159 Long pan Road, Nanjing, 210037 Jiangsu People's Republic of China
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Long pan Road, Nanjing, 210037 Jiangsu People's Republic of China
| | - Gongjian Fan
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, No.159 Long pan Road, Nanjing, 210037 Jiangsu People's Republic of China
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Long pan Road, Nanjing, 210037 Jiangsu People's Republic of China
| | - Dandan Zhou
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, No.159 Long pan Road, Nanjing, 210037 Jiangsu People's Republic of China
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Long pan Road, Nanjing, 210037 Jiangsu People's Republic of China
| | - Xiaojing Li
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, No.159 Long pan Road, Nanjing, 210037 Jiangsu People's Republic of China
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Long pan Road, Nanjing, 210037 Jiangsu People's Republic of China
| |
Collapse
|
3
|
Cheng J, Tan L, Wang Y, Gao M, Liu F, Wang Q, Xu C, Zhang C, Xu W, Hou Y, Jiang T, Zhao L. Optimization of ultrasonic-assisted extraction of total flavonoids from Zanthoxylum bungeanum residue by response surface methodology and evaluation of its algicidal properties. Front Microbiol 2025; 16:1540631. [PMID: 40182292 PMCID: PMC11966038 DOI: 10.3389/fmicb.2025.1540631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/27/2025] [Indexed: 04/05/2025] Open
Abstract
Zanthoxylum bungeanum residue has attracted increasing attention owing to its antibacterial effect, which presents potential as novel antimicrobial agents for the management of algal blooms. In this study, the ability of Z. bungeanum residue extract to control algal blooms has been firstly verified. Then, the response surface methodology was employed to optimize flavonoids yield, the primary antimicrobial component in extract, and the underlying photosynthetic inhibition mechanisms of extract on Tetrodesmus obliquus was investigated. Results showed that the highest yield of total flavonoids was increased to 4.08% when the extraction conditions were a liquid-to-solid ratio of 10:1, ethanol concentration of 60%, extraction temperature of 80°C, and extraction time of 30 min. Meanwhile, treatment with Z. bungeanum residue extract at doses of 40.0 mg/L significantly decreased the Fv/Fm and PIabs values of T. obliquus by 24.36 and 88.87% at 50 h, respectively. The added extract induced damage at multiple levels of physiological and biochemical processes in algal cells, including reduced electron transport capability, disrupted energy transfer in photosystem II, disruption of OEC structure, and altered energy distribution in PSII reaction center. To our knowledge, this study was the first verification of Z. bungeanum residue's algicidal potential, and these findings in our study contribute to a deeper understanding of the allelopathic mechanisms of Z. bungeanum residue extract and offer valuable insights for the management of algal blooms.
Collapse
Affiliation(s)
- Jie Cheng
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China
| | - Long Tan
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China
| | - Yucai Wang
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China
| | - Mengwei Gao
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China
| | - Feifei Liu
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China
| | - Qi Wang
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China
| | - Chengshuai Xu
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China
| | - Chaobo Zhang
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China
| | - Wei Xu
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China
| | - Yuyong Hou
- State Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Tong Jiang
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Lei Zhao
- State Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
4
|
Wang J, Huang X, Chen Z, Chen N, Yang M, Liang C, Yu Y, Shi D. Extraction and purification of total flavonoids from Zanthoxylum planispinum Var. Dintanensis leaves and effect of altitude on total flavonoids content. Sci Rep 2025; 15:7080. [PMID: 40016497 PMCID: PMC11868407 DOI: 10.1038/s41598-025-91528-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 02/20/2025] [Indexed: 03/01/2025] Open
Abstract
To investigate the impact of varying altitudes on the functional components of the leaves of Zanthoxylum planispinum var. Dintanensis, this research collected leaf samples from three different elevations: 610 m, 833 m, and 1083 m. Utilizing water and ethanol as extraction solvents, the study optimized extraction parameters via an ultrasonic-assisted technique to maximize the yield of total flavonoids. Following extraction, five types of macroporous adsorption resins were employed for purification. Significant flavonoid constituents within the purified extracts were qualitatively analyzed using liquid chromatography-mass spectrometry (LC-MS). The antioxidant activity of the extracts was also assessed pre- and post-purification. Findings indicated that water was a more effective solvent than ethanol for flavonoid extraction, yielding optimal results at 70 °C, with a solid-to-liquid ratio of 1:70, 30 min, and 480 W. Conversely, ethanol extraction yielded optimal results at a concentration of 65%, a liquid-to-solid ratio of 1:30, 60 °C, 30 min, and 360 W. Among the tested resins, AB-8 demonstrated the highest efficacy for purifying flavonoid extracts, with adsorption data conforming best to the Freundlich isotherm model. Optimal conditions for AB-8 purification included a crude extract concentration of 2.50 mg/mL, pH 5, and temperature 25 °C, eluted with 10 mL of 60% (v/v) ethanol. A notable increase in total flavonoid content was observed, rising from an average of 3.43-16.00%, with a recovery yield of 82.12%. Leaves collected at 830 m contained the highest total flavonoid content, with rutin predominating over naringenin chalcone and naringenin. At 1083 m, naringenin chalcone was most abundant, while the highest concentration of naringenin was recorded at 610 m. This study provides optimized protocols for the extraction and purification of total flavonoids from Z. planispinum var. Dintanensis leaves, contributing to the development of potential applications for these bioactive compounds in various fields.
Collapse
Affiliation(s)
- Jiyue Wang
- Key Laboratory of Surveillance and Management of Invasive Alien Species in Guizhou Education Department, Platform for Exploitation and Utilization of Characteristic Plant Resources, College of Biological and Environmental Engineering, Guiyang University, Guiyang, China
| | - Xianqi Huang
- Key Laboratory of Surveillance and Management of Invasive Alien Species in Guizhou Education Department, Platform for Exploitation and Utilization of Characteristic Plant Resources, College of Biological and Environmental Engineering, Guiyang University, Guiyang, China
| | - Zhenyu Chen
- Key Laboratory of Surveillance and Management of Invasive Alien Species in Guizhou Education Department, Platform for Exploitation and Utilization of Characteristic Plant Resources, College of Biological and Environmental Engineering, Guiyang University, Guiyang, China
| | - Nian Chen
- Key Laboratory of Surveillance and Management of Invasive Alien Species in Guizhou Education Department, Platform for Exploitation and Utilization of Characteristic Plant Resources, College of Biological and Environmental Engineering, Guiyang University, Guiyang, China
| | - Mingli Yang
- Key Laboratory of Surveillance and Management of Invasive Alien Species in Guizhou Education Department, Platform for Exploitation and Utilization of Characteristic Plant Resources, College of Biological and Environmental Engineering, Guiyang University, Guiyang, China
| | - Chenggang Liang
- College of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Yanghua Yu
- School of Karst Science/State Engineering Technology Institute for Karst Decertification Control, Guizhou Normal University, Guiyang, China
| | - Denghong Shi
- Key Laboratory of Surveillance and Management of Invasive Alien Species in Guizhou Education Department, Platform for Exploitation and Utilization of Characteristic Plant Resources, College of Biological and Environmental Engineering, Guiyang University, Guiyang, China.
| |
Collapse
|
5
|
Chen J, Jiang C, Liu Z, Wang P, Ma Q, Zhou N. Study on optimization of extraction and purification processes for total flavonoids from Lycopi herba roots and their anti-proliferative effects on fibrous synoviocytes in human rheumatoid arthritis. ULTRASONICS SONOCHEMISTRY 2025; 112:107164. [PMID: 39579583 PMCID: PMC11625243 DOI: 10.1016/j.ultsonch.2024.107164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/13/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
Lycopi herba, a traditional Chinese medicinal plant, has long been valued for its aerial parts. however, its roots, which are often discarded as non-medicinal waste, actually contain flavonoid compounds that possess potential medicinal values such as anti-inflammatory, antioxidant, and anti-tumor activities. Despite this, studies on the extraction, purification, and biological activity assessment of total flavonoids from L. herba roots (TFLHR) remain inadequate. Our study aimed to optimize the extraction and purification processes for TFLHR and evaluate their anti-proliferative effects on human fibroblast-like synoviocytes (HFLS-RA), which are key pathological cells in rheumatoid arthritis. By utilizing ultrasound-assisted extraction combined with response surface methodology (RSM), we optimized the extraction conditions, achieving a total flavonoid content of 90.484 ± 0.974 mg/g under the optimal settings: a liquid-solid ratio of 48:1 mL/g, 13 min of ultrasound treatment, 70 % ethanol, and an extraction temperature of 43°C. Subsequently, macroporous resin chromatography was employed for flavonoid purification, with AB-8 resin exhibiting the highest performance, achieving adsorption and desorption rates of 79.64 ± 1.51 % and 88.61 ± 1.02 %, respectively. By further refining the purification conditions through RSM, the purity of flavonoids was increased to 63.9 ± 1.86 %. Through ultra performance liquid chromatography tandem-quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS) analysis, 74 flavonoid compounds across 15 categories were identified. Further activity studies demonstrated that purified TFLHR exhibited significant concentration-dependent anti-proliferative effects on HFLS-RA cells. This study not only provides a scientific basis for the comprehensive utilization of L. herba root resources but also highlights the potential medicinal value of TFLHR in the treatment of rheumatoid arthritis, laying a foundation for future research into its specific mechanisms and clinical applications.
Collapse
Affiliation(s)
- Jie Chen
- Chongqing Engineering Laboratory of Green Planting and Deep Processing of Famous-region Drug in the Three Gorges Reservoir Region, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404020, China; Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing Three Gorges Medical College, Chongqing 404120, China
| | - Chunyang Jiang
- Chongqing Engineering Laboratory of Green Planting and Deep Processing of Famous-region Drug in the Three Gorges Reservoir Region, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404020, China; Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhenyu Liu
- Chongqing Engineering Laboratory of Green Planting and Deep Processing of Famous-region Drug in the Three Gorges Reservoir Region, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404020, China
| | - Panpan Wang
- Chongqing Engineering Laboratory of Green Planting and Deep Processing of Famous-region Drug in the Three Gorges Reservoir Region, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404020, China
| | - Qiang Ma
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing Three Gorges Medical College, Chongqing 404120, China.
| | - Nong Zhou
- Chongqing Engineering Laboratory of Green Planting and Deep Processing of Famous-region Drug in the Three Gorges Reservoir Region, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404020, China.
| |
Collapse
|
6
|
Wang J, Li Z, Wu X, Wang Z, Liang B, Gao Y, Dai Y, Wu Q. Preparation of Physalis alkekengi L. calyx total flavonoids-chitosan composite film and its effect on preservation of chilled beef. Int J Biol Macromol 2024; 283:137768. [PMID: 39557237 DOI: 10.1016/j.ijbiomac.2024.137768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/13/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
In the present study, Physalis alkekengi L. calyx total flavonoids (PCTF) were extracted using the ultrasound-assisted ethanol method and separated and purified using macroporous resin AB-8. Physalis alkekengi L. calyx total flavonoid-chitosan (PCTF-CS) composite films containing 0.05 %, 0.10 % and 0.15 % PCTF were prepared using the purified PCTF laminated with chitosan (CS) and compared with single CS films, respectively, to investigate their mechanical properties, barrier properties, optical properties, microstructure, crystallography, thermal stability, water contact angle, particle size and zeta potential, antioxidant property, antimicrobial property, and preservation effect on chilled beef. The PCTF-CS films with PCTF additions had darker colors and higher mechanical and barrier properties than the CS films. In addition, the addition of PCTF improved the antioxidant and antimicrobial properties of the CS films. It enhances the freshness retention of fresh beef, and effectively inhibits the rise of weight loss, pH, total bacteria, total volatile basic nitrogen, and thiobarbituric acid reactive substances in beef, prolonging the shelf life of beef. These results indicate that the addition of PCTF can provide CS films with superior functional properties and bioactivities and that PCTF-CS composite films are a potential and promising packaging material for food preservation.
Collapse
Affiliation(s)
- Jiaming Wang
- Changchun University, Changchun, Jilin 130022, China
| | - Zhentao Li
- Changchun University, Changchun, Jilin 130022, China
| | - Xinru Wu
- Changchun University, Changchun, Jilin 130022, China
| | - Zifei Wang
- Changchun University, Changchun, Jilin 130022, China
| | - Bin Liang
- Changchun University, Changchun, Jilin 130022, China
| | - Yang Gao
- Jilin Academy of Agricultural Sciences, Changchun, Jilin, Province, 130033, China
| | - Yonggang Dai
- Jilin Academy of Agricultural Sciences, Changchun, Jilin, Province, 130033, China
| | - Qiong Wu
- Changchun University, Changchun, Jilin 130022, China.
| |
Collapse
|
7
|
Wang J, Xu D, Sang YL, Sun M, Liu C, Niu M, Li Y, Liu L, Han X, Li J. A telomere-to-telomere gap-free reference genome of Chionanthus retusus provides insights into the molecular mechanism underlying petal shape changes. HORTICULTURE RESEARCH 2024; 11:uhae249. [PMID: 39664691 PMCID: PMC11629972 DOI: 10.1093/hr/uhae249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/26/2024] [Indexed: 12/13/2024]
Abstract
Chionanthus retusus, an arbor tree of the Oleaceae family, is an ecologically and economically valuable ornamental plant for its remarkable adaptability in landscaping. During C. retusus breeding, we observed diverse floral shapes; however, no available genome for C. retusus has hindered the widespread identification of genes related to flower morphology. Thus, a de novo telomere-to-telomere (T2T) gap-free genome was generated. The assembly, incorporating high-coverage and long-read sequencing data, successfully yielded two complete haplotypes (687 and 683 Mb). The genome encompasses 42 864 predicted protein-coding genes, with all 46 telomeres and 23 centromeres in one haplotype. Whole-genome duplication analysis revealed that C. retusus underwent one fewer event of whole-genome duplication after differentiation compared to other species in the Oleaceae family. Furthermore, flower vein diversity was the main reason for the differences in floral shapes. Auxin-related genes were responsible for petal shape formation on genome-based transcriptome analysis. Specifically, the removal and retention of the first intron in CrAUX/IAA20 resulted in the production of two transcripts, and the differences in the expression levels of CrAUX/IAA20 resulted in the variations of flower veins. Compared to transcripts lacking the first intron, transcripts with intron retention caused more severe decreases in the number and length of flower veins in transgenic Arabidopsis thaliana. Our findings will deepen our understanding of flower morphology development and provide important theoretical support for the cultivation of Oleaceae.
Collapse
Affiliation(s)
- Jinnan Wang
- Shandong Mountain Tai Forest Ecosystem National Station, Key Laboratory of Forest Cultivation in the Lower Yellow River, National Forestry and Grassland Administration, College of Forestry, Shandong Agricultural University, Tai’an 271018, China
| | - Dong Xu
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, Haikou, Hainan 570100, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Ya Lin Sang
- Shandong Mountain Tai Forest Ecosystem National Station, Key Laboratory of Forest Cultivation in the Lower Yellow River, National Forestry and Grassland Administration, College of Forestry, Shandong Agricultural University, Tai’an 271018, China
| | - Maotong Sun
- Shandong Mountain Tai Forest Ecosystem National Station, Key Laboratory of Forest Cultivation in the Lower Yellow River, National Forestry and Grassland Administration, College of Forestry, Shandong Agricultural University, Tai’an 271018, China
| | - Cuishuang Liu
- Shandong Mountain Tai Forest Ecosystem National Station, Key Laboratory of Forest Cultivation in the Lower Yellow River, National Forestry and Grassland Administration, College of Forestry, Shandong Agricultural University, Tai’an 271018, China
| | - Muge Niu
- Shandong Mountain Tai Forest Ecosystem National Station, Key Laboratory of Forest Cultivation in the Lower Yellow River, National Forestry and Grassland Administration, College of Forestry, Shandong Agricultural University, Tai’an 271018, China
| | - Ying Li
- Shandong Mountain Tai Forest Ecosystem National Station, Key Laboratory of Forest Cultivation in the Lower Yellow River, National Forestry and Grassland Administration, College of Forestry, Shandong Agricultural University, Tai’an 271018, China
| | - Laishuo Liu
- Shandong Mountain Tai Forest Ecosystem National Station, Key Laboratory of Forest Cultivation in the Lower Yellow River, National Forestry and Grassland Administration, College of Forestry, Shandong Agricultural University, Tai’an 271018, China
| | - Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Jihong Li
- Shandong Mountain Tai Forest Ecosystem National Station, Key Laboratory of Forest Cultivation in the Lower Yellow River, National Forestry and Grassland Administration, College of Forestry, Shandong Agricultural University, Tai’an 271018, China
| |
Collapse
|
8
|
Peng W, Wang X, Wang W, Wang Y, Huang J, Zhou R, Bo R, Liu M, Yin S, Li J. Comparison, optimization and antioxidant activity of ultrasound-assisted natural deep eutectic solvents extraction and traditional method: A greener route for extraction of flavonoid from Moringa oleifera Lam. leaves. ULTRASONICS SONOCHEMISTRY 2024; 109:107003. [PMID: 39079439 PMCID: PMC11339064 DOI: 10.1016/j.ultsonch.2024.107003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/25/2024]
Abstract
To develop an environmentally sustainable and efficient extraction method for flavonoids from Moringa oleifera Lam. (M. oleifera) leaves, natural deep eutectic solvents (NADES) with ultrasound-assisted extraction was utilized in this study. After optimization of extraction parameters of NADES, including ultrasonic power, ultrasonic time, and liquid-solid ratio, the extraction yield of ultrasound-assisted NADES (UAN) composed of betaine and urea (Bet-Urea) reached 54.69 ± 0.19 mg RE/g DW, which made a 1.7-fold increase compared to traditional ultrasound-assisted traditional solvent (UATS). UPLC-Q Exactive/MS analysis revealed that M. oleifera leaves flavonoids (MOLF) was mainly composed of Quercetin 3-β-D-glucoside, Rutin, Kaempferol-3-O-glucoside, Vitexin and Quercetin. Furthermore, the COSMO-RS model was employed to verify the optimal compatibility of solubility and activity coefficient between Bet-Urea and the five primary flavonoids in MOLF. In vitro antioxidant assays verified that MOLF extracted by UAN exhibited superior antioxidant activity compared to MOLF extracted by UATS. Overall, the devised process not only augmented the extraction yield of MOLF but also effectively preserved the bioactive compounds, thus promoting the utilization of green extraction solvents in the food industry.
Collapse
Affiliation(s)
- Weilong Peng
- School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China
| | - Xiaoguang Wang
- School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China
| | - Weimei Wang
- School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China
| | - Yaya Wang
- School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China
| | - Junjie Huang
- School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China
| | - Ruigang Zhou
- School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China
| | - Ruonan Bo
- School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Mingjiang Liu
- School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Shaojie Yin
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu 225300, PR China.
| | - Jingui Li
- School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| |
Collapse
|
9
|
Liu X, Dong W, Yi Y, Wang L, Hou W, Ai Y, Wang H, Min T. Comparison of Nutritional Quality and Functional Active Substances in Different Parts of Eight Lotus Seed Cultivars. Foods 2024; 13:2335. [PMID: 39123527 PMCID: PMC11311617 DOI: 10.3390/foods13152335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
In this study, "Honghu White Lotus", "Red Lotus (HH)", "Hunan Cunshan Lotus (CS)", "Wuyi Xuanlian", "Space Lotus 36", "Fujian Jianning White Lotus (JB)", "Jiangsu Yangzhou Lotus (JY)", and "Suzhou Dongshan Lotus" were selected as experimental subjects. The lotus seed flesh and lotus plumule of each cultivar were selected for nutritional quality and functional active substance analyses. Comparing different cultivars of lotus seeds, the protein and crude fat contents of JY flesh were the highest at 65.59 mg/g and 13%, respectively. The VC content of JB flesh and lotus plumule is the highest at 41.56 mg/g and 204.29 mg/g, respectively. JB flesh has the lowest soluble sugar content, at 17.87 mg/g, while HB's lotus plumule and flesh have the highest content, at 33.67 mg/g and 29.62 mg/g, respectively. There was no significant difference in the crude fat content of the flesh and lotus plumule among the eight cultivars. TK flesh and lotus plumule have the highest amylose content, at 23.67 mg/g and 76.81 mg/g, respectively. Among them, the total starch content of JB (476.17 mg/g) was relatively high, whereas its amylose content was only 26.09 mg/g. Lower amylose content makes it less prone to aging. The total phenolic and flavonoid contents of the JY lotus plumule were the highest, at 18.64 and 21.04 mg/g, respectively. The alkaloid content of CS, HH, and JY was relatively high at 20.01, 19.29, and 18.68 mg/g, respectively. These can provide a consultation for the estimation and processing of the nutritional quality of different lotus seeds.
Collapse
Affiliation(s)
- Xueting Liu
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (X.L.); (W.D.); (Y.Y.); (W.H.); (Y.A.)
| | - Wanyu Dong
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (X.L.); (W.D.); (Y.Y.); (W.H.); (Y.A.)
| | - Yang Yi
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (X.L.); (W.D.); (Y.Y.); (W.H.); (Y.A.)
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Limei Wang
- School Biology & Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (L.W.); (H.W.)
| | - Wenfu Hou
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (X.L.); (W.D.); (Y.Y.); (W.H.); (Y.A.)
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Youwei Ai
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (X.L.); (W.D.); (Y.Y.); (W.H.); (Y.A.)
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hongxun Wang
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
- School Biology & Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (L.W.); (H.W.)
| | - Ting Min
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (X.L.); (W.D.); (Y.Y.); (W.H.); (Y.A.)
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
10
|
Chen S, Lv Q, Liu C, Yuan H, Li C, Liu Y, Zhang W. Optimization of Extraction and Purification of Flavonoids from Stigmaless Floral Residues of Crocus sativus L. and Their Stimulatory Effect on Glucose Uptake In Vitro. Molecules 2024; 29:3271. [PMID: 39064849 PMCID: PMC11279114 DOI: 10.3390/molecules29143271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/02/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Saffron, the dried stigma of Crocus sativus L., is a renowned spice and medicinal herb. During its production, a significant amount of floral residues, rich in bioactive compounds, are discarded as agricultural by-products. This study presents a novel approach to the sustainable utilization of these stigmaless floral residues (FRC) by optimizing the extraction and purification of their flavonoids, analyzing their chemical composition, and evaluating their effect on glucose uptake. The extraction of flavonoids from FRC was optimized using single-factor experiments and response surface methodology. The optimal conditions for extraction were an ethanol concentration of 67.7%, a temperature of 67.6 °C, a solid-to-liquid ratio of 1:30, an extraction time of 3 h, and two extractions. The crude extract obtained was then purified using macroporous resin HPD100, selected after comparing the adsorption and desorption characteristics of six different resins. The optimal purification parameters were an adsorption concentration of 40 mg/mL, a loading volume of 7 bed volumes (BV) at a flow rate of 3 BV/h, and 80% ethanol as the eluent with a volume of 4 BV. The resulting flavonoid-enriched extract (FFRC) had an experimental yield of 8.67% ± 0.01 and a flavonoid content of 128.30 ± 4.64 mg/g. The main flavonoids in FFRC were identified as kaempferol glycosides, isorhamnetin glycosides, and quercetin glycosides. Moreover, FFRC significantly stimulated glucose consumption and uptake in C2C12 myotubes, suggesting its potential utility as a natural hypoglycemic agent. This study contributes to the sustainable and value-added utilization of agricultural resources by providing data for the exploitation and application of flavonoids from saffron by-products.
Collapse
Affiliation(s)
- Sunce Chen
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; (S.C.); (Q.L.); (H.Y.); (C.L.); (Y.L.)
- Wenzhou Student Practical School, 1111 Fuzhou Road, Wenzhou 325000, China
| | - Quanhe Lv
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; (S.C.); (Q.L.); (H.Y.); (C.L.); (Y.L.)
| | - Chunhui Liu
- China National Institute of Standardization, 4 Zhichun Road, Beijing 100191, China
| | - Hongxia Yuan
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; (S.C.); (Q.L.); (H.Y.); (C.L.); (Y.L.)
| | - Chunfei Li
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; (S.C.); (Q.L.); (H.Y.); (C.L.); (Y.L.)
| | - Yifan Liu
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; (S.C.); (Q.L.); (H.Y.); (C.L.); (Y.L.)
| | - Wen Zhang
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; (S.C.); (Q.L.); (H.Y.); (C.L.); (Y.L.)
| |
Collapse
|
11
|
Wang Y, Wu K, Zhao R, Xie L, Li Y, Zhao G, Zhang FG. Prediction of potential suitable habitats in the 21st century and GAP analysis of priority conservation areas of Chionanthus retusus based on the MaxEnt and Marxan models. FRONTIERS IN PLANT SCIENCE 2024; 15:1304121. [PMID: 38486852 PMCID: PMC10937578 DOI: 10.3389/fpls.2024.1304121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/05/2024] [Indexed: 03/17/2024]
Abstract
Chionanthus retusus (C. retusus) has a high economic and medicinal value, but in recent years it has been included in the list of China's major protected plants and China's Red List of Biodiversity due to the serious destruction of its wild germplasm resources. Based on 131 sample points of C. retusus, this study simulated potential habitats and spatial changes of C. retusus in the 21st century using the Maxent model combined with the geographic information system ArcGIS, predicted prioritized protected areas by the Marxan model, and assessed current conservation status through GAP analysis. The results showed that (1) when the regularization multiplier was 1.5 and the feature combinations were linear, quadratic, and fragmented, the area under the curve of the subjects in the training and test sets were both above 0.9, the true skill statistic value was 0.80, and the maximum Kappa value was 0.62, meaning that the model had high accuracy; (2) Temperature seasonality, annual precipitation, min temperature for coldest month, and precipitation of wettest month had relatively strong influences on species' ranges. (3) The moderately and optimally suitable habitats of C. retusus were primly located in the areas of southwestern Shanxi, central Hebei, western Henan, Shandong, Shaanxi, Anhui and Hubei; (4) Under different future climate scenarios, the area of each class of suitable habitat will increase for varied amounts compared to the current period, with a general trend of expansion to the south; (5) The C. retusus priority protected areas were mainly located in most of Shandong, southern Liaoning, southwestern Shanxi, western Henan, and central Hebei, and its conservation vacancy area was relatively large compared to its protected area. These results will provide scientific strategies for implementing long-term conservation of C. retusus in China and similar regions under warming conditions in the 21st century.
Collapse
Affiliation(s)
- Yongji Wang
- School of Life Science, Shanxi Engineering Research Center of Microbial Application Technologies, Shanxi Normal University, Taiyuan, China
| | - Kefan Wu
- School of Life Science, Shanxi Engineering Research Center of Microbial Application Technologies, Shanxi Normal University, Taiyuan, China
| | - Ruxia Zhao
- School of Life Science, Shanxi Engineering Research Center of Microbial Application Technologies, Shanxi Normal University, Taiyuan, China
| | - Liyuan Xie
- School of Life Science, Shanxi Engineering Research Center of Microbial Application Technologies, Shanxi Normal University, Taiyuan, China
| | - Yifan Li
- School of Life Science, Shanxi Engineering Research Center of Microbial Application Technologies, Shanxi Normal University, Taiyuan, China
| | - Guanghua Zhao
- School of Life Science, Shanxi Engineering Research Center of Microbial Application Technologies, Shanxi Normal University, Taiyuan, China
- Administrative Office, Shanwei Middle School, Shanwei, China
| | - Fen-Guo Zhang
- School of Life Science, Shanxi Engineering Research Center of Microbial Application Technologies, Shanxi Normal University, Taiyuan, China
| |
Collapse
|
12
|
He L, Wang Z, Lu J, Qin C, He J, Ren W, Liu X. Trollius chinensis Bunge: A Comprehensive Review of Research on Botany, Materia Medica, Ethnopharmacological Use, Phytochemistry, Pharmacology, and Quality Control. Molecules 2024; 29:421. [PMID: 38257334 PMCID: PMC10819464 DOI: 10.3390/molecules29020421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
Trollius chinensis Bunge, a perennial herb belonging to the Ranunculaceae family, has been extensively used in traditional Chinese medicine. Documented in the Supplements to the Compendium of Materia Medica, its medicinal properties encompass a spectrum of applications, including heat clearance, detoxification, alleviation of oral/throat sores, earaches, eye pain, cold-induced fever, and vision improvement. Furthermore, T. chinensis is used in clinical settings to treat upper respiratory infections, pharyngitis, tonsillitis, esoenteritis, canker, bronchitis, etc. It is mainly used to treat inflammation, such as inflammation of the upper respiratory tract and nasal mucosa. This comprehensive review explores the evolving scientific understanding of T. chinensis, covering facets of botany, materia medica, ethnopharmacological use, phytochemistry, pharmacology, and quality control. In particular, the chemical constituents and pharmacological research are reviewed. Polyphenols, mainly flavonoids and phenolic acids, are highly abundant among T. chinensis and are responsible for antiviral, antimicrobial, and antioxidant activities. The flower additionally harbors trace amounts of volatile oil, polysaccharides, and other bioactive compounds. The active ingredients of the flower have fewer side effects, and it is used in children because of its minimal side effects, which has great research potential. These findings validate the traditional uses of T. chinensis and lay the groundwork for further scientific exploration. The sources utilized in this study encompass Web of Science, Pubmed, CNKI site, classic monographs, Chinese Pharmacopoeia, Chinese Medicine Dictionary, and doctoral and master's theses.
Collapse
Affiliation(s)
- Lianqing He
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (L.H.); (Z.W.); (J.L.); (C.Q.); (J.H.)
| | - Zhen Wang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (L.H.); (Z.W.); (J.L.); (C.Q.); (J.H.)
| | - Jiaxin Lu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (L.H.); (Z.W.); (J.L.); (C.Q.); (J.H.)
| | - Chen Qin
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (L.H.); (Z.W.); (J.L.); (C.Q.); (J.H.)
| | - Jiajun He
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (L.H.); (Z.W.); (J.L.); (C.Q.); (J.H.)
| | - Weichao Ren
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (L.H.); (Z.W.); (J.L.); (C.Q.); (J.H.)
| | - Xiubo Liu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (L.H.); (Z.W.); (J.L.); (C.Q.); (J.H.)
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi 154007, China
| |
Collapse
|