1
|
Bender A, Schmidt H, Wellner DL, Duda GN, Brandl C, Damm P. In vivo load on knee, hip and spine during manual materials handling with two lifting techniques. J Biomech 2024; 163:111963. [PMID: 38286711 DOI: 10.1016/j.jbiomech.2024.111963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024]
Abstract
It is generally accepted that the lifting technique strongly influences physical loads within the human body and, thus, the risk of musculoskeletal disorders. However, there is a lack of knowledge regarding whether particular lifting techniques are effective in reducing loads. Hence, this retrospective study quantified (partly published) in vivo loads at joints within the human body during two typical lifting techniques, stoop lifting and squat lifting. Patients who had received instrumented implants underwent in vivo load measurements at either the knee (two patients), the hip (eight patients), or the upper lumbar spine (four patients) while lifting a 10 kg weight frontally with either straight (stoop) or bent (squat) knees. Contact forces and moments and the orientation of the contact force vector were determined and examined using the paired t test of Statistical Parametric Mapping. The two lifting techniques did not differ in terms of load magnitudes but did differ in terms of directions: (i) at the hip joint, the load vector varied significantly (p < 0.05) in the frontal and sagittal planes, (ii) at the knee joint, the load vector differed significantly (p < 0.05) in the sagittal plane (iii) while the load vector and magnitude did not differ at the upper lumbar spine (p > 0.05). Our findings indicate that the lifting technique causes changes in the orientation rather than the magnitude of lower extremity joint contact loads. Even though this quantification could only be performed in a small group of patients, the quantification of the relevance of such lifting technique recommendations will hopefully guide future recommendations towards a more scientific interpretation.
Collapse
Affiliation(s)
- Alwina Bender
- Julius Wolff Institute, Berlin Institute of Health at Charité, Charité - Universitätsmedizin Berlin, Germany
| | - Hendrik Schmidt
- Julius Wolff Institute, Berlin Institute of Health at Charité, Charité - Universitätsmedizin Berlin, Germany
| | - Daniela L Wellner
- Julius Wolff Institute, Berlin Institute of Health at Charité, Charité - Universitätsmedizin Berlin, Germany
| | - Georg N Duda
- Julius Wolff Institute, Berlin Institute of Health at Charité, Charité - Universitätsmedizin Berlin, Germany
| | - Christopher Brandl
- Institute of Industrial Engineering and Ergonomics, RWTH Aachen University, Aachen, Germany; Fraunhofer Institute for Communication, Information Processing and Ergonomics FKIE, Aachen, Germany
| | - Philipp Damm
- Julius Wolff Institute, Berlin Institute of Health at Charité, Charité - Universitätsmedizin Berlin, Germany.
| |
Collapse
|
2
|
Zhou S, Bender A, Kutzner I, Dymke J, Maleitzke T, Perka C, Duda GN, Winkler T, Damm P. Loading of the Hip and Knee During Swimming: An in Vivo Load Study. J Bone Joint Surg Am 2023; 105:1962-1971. [PMID: 38079507 DOI: 10.2106/jbjs.23.00218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
BACKGROUND Swimming is commonly recommended as postoperative rehabilitation following total hip arthroplasty (THA) and total knee arthroplasty (TKA). So far, in vivo hip and knee joint loads during swimming remain undescribed. METHODS In vivo hip and knee joint loads were measured in 6 patients who underwent THA and 5 patients who underwent TKA with instrumented joint implants. Joint loads, including the resultant joint contact force (F Res ), torsional moment around the femoral shaft axis or the tibial axis (M Tors ), bending moment at the middle of the femoral neck (M Bend ), torsional moment around the femoral neck axis (M Tne ), and medial force ratio (MFR) in the knee, were measured during breaststroke swimming at 0.5, 0.6, and 0.7 m/s and the breaststroke and crawl kicks at 0.5 and 1.0 m/s. RESULTS The ranges of the median maximal F Res were 157% to 193% of body weight for the hip and 93% to 145% of body weight for the knee during breaststroke swimming. Greater maxima of F Res (hip and knee), M Tors (hip and knee), M Bend (hip), and M Tne (hip) were observed with higher breaststroke swimming velocities, but significance was only identified between 0.5 and 0.6 m/s in F Res (p = 0.028), M Tors (p = 0.028), and M Bend (p = 0.028) and between 0.5 and 0.7 m/s in F Res (p = 0.045) in hips. No difference was found in maximal MFR between different breaststroke swimming velocities. The maximal F Res was significantly positively correlated with the breaststroke swimming velocity (hip: r = 0.541; p < 0.05; and knee: r = 0.414; p < 0.001). The maximal F Res (hip and knee) and moments (hip) were higher in the crawl kick than in the breaststroke kick, and a significant difference was recognized in F Res Max for the hip: median, 179% versus 118% of body weight (p = 0.028) for 0.5 m/s and 166% versus 133% of body weight (p = 0.028) for 1.0 m/s. CONCLUSIONS Swimming is a safe and low-impact activity, particularly recommended for patients who undergo THA or TKA. Hip and knee joint loads are greater with higher swimming velocities and can be influenced by swimming styles. Nevertheless, concrete suggestions to patients who undergo arthroplasty on swimming should involve individual considerations. LEVEL OF EVIDENCE Therapeutic Level IV . See Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- Sijia Zhou
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Brandenburg Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Alwina Bender
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ines Kutzner
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jörn Dymke
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Tazio Maleitzke
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health Charité Clinician Scientist Program, BIH Biomedical Innovation Academy, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Carsten Perka
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Georg N Duda
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Brandenburg Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Tobias Winkler
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Brandenburg Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Philipp Damm
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
3
|
Streck LE, Chiu YF, Braun S, Mujaj A, Hanreich C, Boettner F. Activity Following Total Hip Arthroplasty: Which Patients Are Active, and Is Being Active Safe? J Clin Med 2023; 12:6482. [PMID: 37892620 PMCID: PMC10607190 DOI: 10.3390/jcm12206482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/24/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Younger and physically active patients demand a return to sport after total hip arthroplasty (THA). However, because of the risk of implant wear and loosening, high-impact activities are often not recommended. The current study evaluates predictive factors and revision rates in patients with higher activity levels. METHODS This retrospective study included 4152 hips in 3828 patients aged 45-75 that underwent primary THA for primary osteoarthritis between 2009 and 2019 with a minimum follow-up of 2 years. Pain and Lower Extremity Activity Scale (LEAS) were assessed before and 2 years after surgery. Activity was classified as low (LEAS 1-6), moderate (LEAS 7-13), or high (LEAS 14-18). RESULTS Pain and LEAS improved from preoperative to 2-years postoperative (p < 0.001). The activity level was low in 6.2%, moderate in 52.9%, and high in 40.9% of the patients. Younger age, lower BMI, ASA, and CCI, male sex, and higher preoperative LEAS correlated with higher activity at 2 years (p < 0.001). The predicted revision-free survival rates between the activity groups were better for more highly active patients (p < 0.001). CONCLUSIONS High physical activity 2 years following THA, with participating in sports like jogging several times a week, did not increase the risk of revision surgery. THA patients should not be prevented from a highly active lifestyle.
Collapse
Affiliation(s)
- Laura Elisa Streck
- Adult Reconstruction and Joint Replacement Department, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA
| | - Yu-Fen Chiu
- Biostats Core, Research Administration, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA
| | - Sebastian Braun
- Adult Reconstruction and Joint Replacement Department, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA
- Center for Musculoskeletal Surgery, Charité Universitätsmedizin Berlin, Member of Freie Universität Berlin and Humboldt University Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Anisa Mujaj
- Adult Reconstruction and Joint Replacement Department, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA
| | - Carola Hanreich
- Adult Reconstruction and Joint Replacement Department, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA
- Department for Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, 3010 Bern, Switzerland
| | - Friedrich Boettner
- Adult Reconstruction and Joint Replacement Department, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA
| |
Collapse
|