1
|
Tao J, Wei J, Kan J, Qi K, Wang T, Wang A, Pei W, Gao H, Yang C, Li X. Smart self-assembly of a multifunctional theranostic nanozyme for self-enhanced precise chemo/chemodynamic therapy. NANOSCALE 2025. [PMID: 40390686 DOI: 10.1039/d5nr00775e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
The use of hypoxia-activated prodrugs to treat breast cancer is a promising therapeutic strategy, but limited by inconsistent hypoxia states in whole tumors. Herein, we developed a theranostic nanozyme using Mn2+-driven self-assembly of fluorenylmethyloxycarbonyl-protected cysteine (Fmoc-Cys) as a multifunctional carrier for the first time, and co-encapsulated with tirapazamine (TPZ) and glucose oxidase (GOX). The prepared nanozyme is sensitive to excess glutathione (GSH) and achieves efficient self-enhanced chemo/chemodynamic therapy (CDT) thanks to the synergistic effect among the multiple components. The encapsulated GOX could consume oxygen, which promoted the activation of TPZ in normoxic tumor regions, and generate excessive H2O2, which enhanced the CDT effect of Mn2+. Meanwhile, the release of Mn2+ was ideal for T1 magnetic resonance imaging (MRI), and the fluctuations of sO2 could be monitored by photoacoustic imaging (PAI). Therefore, this work presents a smart self-assembly nanozyme capable of dual-modality imaging and self-enhanced combined therapy.
Collapse
Affiliation(s)
- Jin Tao
- School of Medical Imaging, Binzhou Medical University, Yantai, Shandong, China.
| | - Junhui Wei
- School of Medical Imaging, Binzhou Medical University, Yantai, Shandong, China.
| | - Junnan Kan
- Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Kai Qi
- School of Medical Imaging, Binzhou Medical University, Yantai, Shandong, China.
| | - Tingting Wang
- School of Medical Imaging, Binzhou Medical University, Yantai, Shandong, China.
| | - Ailing Wang
- Department of Clinical Laboratory, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Wenxin Pei
- School of Medical Imaging, Binzhou Medical University, Yantai, Shandong, China.
| | - Haiyan Gao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Caixia Yang
- School of Medical Imaging, Binzhou Medical University, Yantai, Shandong, China.
| | - Xianglin Li
- School of Medical Imaging, Binzhou Medical University, Yantai, Shandong, China.
| |
Collapse
|
2
|
Liang L, Jia M, Zhao M, Deng Y, Tang J, He X, Liu Y, Yan K, Yu X, Yang H, Li C, Li Y, Li T. Progress of Nanomaterials Based on Manganese Dioxide in the Field of Tumor Diagnosis and Therapy. Int J Nanomedicine 2024; 19:8883-8900. [PMID: 39224196 PMCID: PMC11368147 DOI: 10.2147/ijn.s477026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
As a pivotal transition metal oxide, manganese dioxide (MnO2) has garnered significant attention owing to its abundant reserves, diverse crystal structures and exceptional performance. Nanosizing MnO2 results in smaller particle sizes, larger specific surface areas, optimized material characteristics, and expanded application possibilities. With the burgeoning research efforts in this field, MnO2 has emerged as a promising nanomaterial for tumor diagnosis and therapy. The distinctive properties of MnO2 in regulating the tumor microenvironment (TME) have attracted considerable interest, leading to a rapid growth in research on MnO2-based nanomaterials for tumor diagnosis and treatment. Additionally, MnO2 nanomaterials are also gradually showing up in the regulation of chronic inflammatory diseases. In this review, we mainly summarized the recent advancements in various MnO2 nanomaterials for tumor diagnosis and therapy. Furthermore, we discuss the current challenges and future directions in the development of MnO2 nanomaterials, while also envisaging their potential for clinical translation.
Collapse
Grants
- This work was supported by the Sichuan Science and Technology Program (grant numbers 2023NSFSC0620, 2022YFS0614, 2022YFS0622, 2022YFS0627), the Luzhou Municipal People’s Government-Southwest Medical University Joint Scientific Research Project (grant number 2023LZXNYDHZ003), the Open fund for Key Laboratory of Medical Electrophysiology of Ministry of Education (grant numbers KeyME-2023-07), the Youth Science Foundation Project of Southwest Medical University (grant numbers 2023QN075, 2022QN025), the Southwest Medical University Science and Technology Project (No.2021ZKMS034), the Hejiang County People’s Hospital-Southwest Medical University Joint Scientific Research Project (grant numbers 2023HJXNYD03, 2022HJXNYD03, 2022HJXNYD14), Chinese student innovation and entrepreneurship project (202310632027)
Collapse
Affiliation(s)
- Lijuan Liang
- Department of Pharmacy, Hejiang County People’s Hospital, Luzhou, Sichuan, People’s Republic of China
| | - Ming Jia
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Nanchong Institute for Food and Drug Control, Nanchong, Sichuan, People’s Republic of China
| | - Min Zhao
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yiping Deng
- Analysis and Testing Center, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Jun Tang
- Analysis and Testing Center, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Xinghui He
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yilin Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Kexin Yan
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Xin Yu
- Chinese Pharmacy Laboratory, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Hong Yang
- Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yao Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Science and Technology department, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Tao Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| |
Collapse
|
3
|
Li Y, Pan X, Hai P, Zheng Y, Shan Y, Zhang J. All-in-one nanotheranostic platform based on tumor microenvironment: new strategies in multimodal imaging and therapeutic protocol. Drug Discov Today 2024; 29:104029. [PMID: 38762088 DOI: 10.1016/j.drudis.2024.104029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Conventional tumor diagnosis and treatment approaches have significant limitations in clinical application, whereas personalized theranostistic nanoplatforms can ensure advanced diagnosis, precise treatment, and even a good prognosis in cancer. Tumor microenvironment (TME)-targeted therapeutic strategies offer absolute advantages in all aspects compared to tumor cell-targeted therapeutic strategies. It is essential to create a TME-responsive all-in-one nanotheranostic platform to facilitate individualized tumor treatment. Based on the TME-responsive multifunctional nanotheranostic platform, we focus on the combined use of multimodal imaging and therapeutic protocols and summary and outlooks on the latest advanced nanomaterials and structures for creating the integrated nanotheranostic system based on material science, which provide insights and reflections on the development of innovative TME-targeting tools for cancer theranostics.
Collapse
Affiliation(s)
- Yanchen Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaoyan Pan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Ping Hai
- NMPA Key Laboratory for Quality Control of Traditional Chinese and Tibetan Medicine, Qinghai Provincial Drug Inspection and Testing Institute, Xining 810016, China
| | - Yongbiao Zheng
- NMPA Key Laboratory for Quality Control of Traditional Chinese and Tibetan Medicine, Qinghai Provincial Drug Inspection and Testing Institute, Xining 810016, China
| | - Yuanyuan Shan
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Jie Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
4
|
Huang P, Tang Q, Li M, Yang Q, Zhang Y, Lei L, Li S. Manganese-derived biomaterials for tumor diagnosis and therapy. J Nanobiotechnology 2024; 22:335. [PMID: 38879519 PMCID: PMC11179396 DOI: 10.1186/s12951-024-02629-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/06/2024] [Indexed: 06/19/2024] Open
Abstract
Manganese (Mn) is widely recognized owing to its low cost, non-toxic nature, and versatile oxidation states, leading to the emergence of various Mn-based nanomaterials with applications across diverse fields, particularly in tumor diagnosis and therapy. Systematic reviews specifically addressing the tumor diagnosis and therapy aspects of Mn-derived biomaterials are lacking. This review comprehensively explores the physicochemical characteristics and synthesis methods of Mn-derived biomaterials, emphasizing their role in tumor diagnostics, including magnetic resonance imaging, photoacoustic and photothermal imaging, ultrasound imaging, multimodal imaging, and biodetection. Moreover, the advantages of Mn-based materials in tumor treatment applications are discussed, including drug delivery, tumor microenvironment regulation, synergistic photothermal, photodynamic, and chemodynamic therapies, tumor immunotherapy, and imaging-guided therapy. The review concludes by providing insights into the current landscape and future directions for Mn-driven advancements in the field, serving as a comprehensive resource for researchers and clinicians.
Collapse
Affiliation(s)
- Peiying Huang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Qinglai Tang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Mengmeng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yuming Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, 310015, China.
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
5
|
Ostruszka R, Halili A, Pluháček T, Rárová L, Jirák D, Šišková K. Advanced protein-embedded bimetallic nanocomposite optimized for in vivo fluorescence and magnetic resonance bimodal imaging. J Colloid Interface Sci 2024; 663:467-477. [PMID: 38422973 DOI: 10.1016/j.jcis.2024.02.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
HYPOTHESIS The development of bimodal imaging probes represents a hot topic of current research. Herein, we deal with developing an innovative bimodal contrast agent enabling fluorescence imaging (FI)/magnetic resonance imaging (MRI) and, simultaneously, consisting of biocompatible nanostructures. Optimized synthesis of advanced protein-embedded bimetallic (APEBM) nanocomposite containing luminescent gold nanoclusters (AuNC) and superparamagnetic iron oxide nanoparticles (SPION), suitable for in vivo dual-modal FI/MR imaging is reported. EXPERIMENTS The APEBM nanocomposite was prepared by a specific sequential one-pot green synthetic approach that is optimized to increase metals (Au, Fe) content and, consequently, the imaging ability of the resulting nanostructures. The protein matrix, represented by serum albumin, was intentionally chosen, and used since it creates an efficient protein corona for both types of optically/magnetically-susceptible nanostructures (AuNC, SPION) and ensures biocompatibility of the resulting APEBM nanocomposite although it contains elevated metal concentrations (approx. 1 mg·mL-1 of Au, around 0.3 mg·mL-1 of Fe). In vitro and in vivo imaging was performed. FINDINGS Successful in vivo FI and MRI recorded in healthy mice corroborated the applicability of the APEBM nanocomposite and, simultaneously, served as a proof of concept concerning the potential future exploitation of this new FI/MRI bimodal contrast agent in preclinical and clinical practice.
Collapse
Affiliation(s)
- Radek Ostruszka
- Department of Experimental Physics, Faculty of Science, Palacký University Olomouc, tř. 17. listopadu 12, 77900 Olomouc, Czech Republic
| | - Aminadav Halili
- Institute for Clinical and Experimental Medicine, Vídeňská 9, 140 21 Prague, Czech Republic
| | - Tomáš Pluháček
- Department of Analytical Chemistry, Faculty of Science, Palacký University Olomouc, tř. 17. listopadu 12, 77900 Olomouc, Czech Republic
| | - Lucie Rárová
- Department of Experimental Biology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 77900 Olomouc, Czech Republic
| | - Daniel Jirák
- Institute for Clinical and Experimental Medicine, Vídeňská 9, 140 21 Prague, Czech Republic; Faculty of Health Studies, Technical University of Liberec, Studentská 1402/2, 46117 Liberec, Czech Republic
| | - Karolína Šišková
- Department of Experimental Physics, Faculty of Science, Palacký University Olomouc, tř. 17. listopadu 12, 77900 Olomouc, Czech Republic.
| |
Collapse
|
6
|
Weng N, Wei B, Li G, Yin R, Xin W, Liu C, Li H, Shao C, Jiang T, Wang X. Fluorescence and magnetic resonance imaging of ONL-93 cells in a rat model of ischemic. Magn Reson Imaging 2024; 107:111-119. [PMID: 38185391 DOI: 10.1016/j.mri.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/04/2023] [Accepted: 12/28/2023] [Indexed: 01/09/2024]
Abstract
OBJECTIVES The current methods for detecting myelin changes in ischemic stroke are indirect and cannot accurately reflect their status. This study aimed to develop a novel fluorescent-magnetic resonance dual-modal molecular imaging probe for direct imaging of myelin. METHODS Compounds 7a and 7b were synthesized by linking the MeDAS group and Gadolinium (III) 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate. Compound 7a was selected for characterization and further study. Cell uptake, cytotoxicity, and magnetic resonance imaging scans were performed on cells. In vitro experiments on frozen brain sections from 7-day-old, 8-week-old, and ischemic stroke rats were compared with commercially available Luxol Fast Blue staining. After HPLC and MR scanning, brain tissue was soaked in 7a and scanned using T1WI and T1maps sequences. RESULTS Spectrophotometer results showed that compounds 7a and 7b had fluorescent properties. MR scans indicated that the compounds had contrast agent properties. Cells could uptake 7a and exhibited high signals in imaging scans. Compound 7a brain tissue staining showed more fluorescence in myelin-rich regions and identified injury sites in ischemic stroke rats. MR scanning of brain sections provided clear myelin contrast. CONCLUSION A novel fluorescent-magnetic resonance dual-modal molecular imaging probe for direct imaging of myelin was successfully developed and tested in rats with ischemic stroke. These findings provide new insights for the clinical diagnosis of demyelinating diseases.
Collapse
Affiliation(s)
- Na Weng
- Department of Nuclear medicine, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Bin Wei
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Guodong Li
- Department of Nuclear medicine, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Ruijuan Yin
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Wenbin Xin
- Department of Nuclear medicine, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Caiyun Liu
- Department of Nuclear medicine, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Hao Li
- School of Medical Imaging, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Cuijie Shao
- Medical Research Center, Binzhou Medical University Hospital, Binzhou 256600, China.
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Xu Wang
- Department of Nuclear medicine, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China.
| |
Collapse
|
7
|
Lai J, Luo Z, Chen L, Wu Z. Advances in nanotechnology-based targeted-contrast agents for computed tomography and magnetic resonance. Sci Prog 2024; 107:368504241228076. [PMID: 38332327 PMCID: PMC10854387 DOI: 10.1177/00368504241228076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
X-ray computed tomography (CT) and magnetic resonance (MR) imaging are essential tools in modern medical diagnosis and treatment. However, traditional contrast agents are inadequate in the diagnosis of various health conditions. Consequently, the development of targeted nano-contrast agents has become a crucial area of focus in the development of medical image-enhancing contrast agents. To fully understand the current development of nano-contrast agents, this review provides an overview of the preparation methods and research advancements in CT nano-contrast agents, MR nano-contrast agents, and CT/MR multimodal nano-contrast agents described in previous publications. Due to the physicochemical properties of nanomaterials, such as self-assembly and surface modifiability, these specific nano-contrast agents can greatly improve the targeting of lesions through various preparation methods and clearly highlight the distinction between lesions and normal tissues in both CT and MR. As a result, they have the potential to be used in the early stages of disease to improve diagnostic capacity and level in medical imaging.
Collapse
Affiliation(s)
- Jianjun Lai
- Institute of Intelligent Control and Robotics, Hangzhou Dianzi University, Hangzhou, China
- Department of Radiation Oncology, Zhejiang Hospital, Hangzhou, China
| | - Zhizeng Luo
- Institute of Intelligent Control and Robotics, Hangzhou Dianzi University, Hangzhou, China
| | - Liting Chen
- Department of Radiation Oncology, Zhejiang Hospital, Hangzhou, China
| | - Zhibing Wu
- Department of Radiation Oncology, Zhejiang Hospital, Hangzhou, China
| |
Collapse
|
8
|
Chong L, Jiang YW, Wang D, Chang P, Xu K, Li J. Targeting and repolarizing M2-like tumor-associated macrophage-mediated MR imaging and tumor immunotherapy by biomimetic nanoparticles. J Nanobiotechnology 2023; 21:401. [PMID: 37907987 PMCID: PMC10617215 DOI: 10.1186/s12951-023-02122-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/21/2023] [Indexed: 11/02/2023] Open
Abstract
Anti-tumor M1-like and pro-tumor M2-like tumor-associated macrophages (TAMs) coexist in tumor microenvironments (TME). The adverse effects of these M1/M2 subsets on tumors directly affect the current strategies to improve anti-tumor immune response. Therefore, it has attracted great attention to change the tumor immunosuppressive microenvironment by reprogramming TAMs. In this paper, we constructed biomimetic nanoparticles (HMMDN-Met@PM) targeting M2-like TAMs for macrophage re-polarization. In detail, the core of the biomimetic nanoparticles is metformin-loaded hollow mesoporous manganese dioxide nanoparticles (HMMDN-Met). Benefited from the hollow and porous structure of HMMDN, metformin, the regulator of M1/M2 adopted in this work, can be easily and widely loaded into HMMDN. Moreover, macrophage membranes were utilized for HMMDN-Met coating (HMMDN-Met@MM) to prevent the premature drug leakage and provide specific molecular recognition/TME targeting. In addition, M2 macrophage targeting peptide (M2pep) was modified on the surface of macrophage membrane to specifically deliver the drug to M2-like TAMs to promote the polarization of M2 to M1 macrophages. Through in vitro and in vivo studies, we found that the expression of surface markers and inflammatory factors CD206, Arg-1 and IL-10 of type M2 macrophages decreased, while the surface markers of type M1 macrophages and the expression of inflammatory factors CD80, TNF-α and iNOS increased, indicating the successful re-polarization of M2 macrophages and finally realizing the inhibition of tumor growth. At the same time, under the acidic and GSH conditions of tumor, HMMDN was decomposed into Mn2+, which is a contrast agent for magnetic resonance imaging, thus realizing the tracking of tumor. This work practices biomimetic nanosystem in targeted imaging and immunotherapy, paving the way for strategy designing for tumor inhibition.
Collapse
Affiliation(s)
- Lijuan Chong
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, People's Republic of China
| | - Yao-Wen Jiang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, People's Republic of China
| | - Dongxu Wang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Pengzhao Chang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Kai Xu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, People's Republic of China.
| | - Jingjing Li
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, People's Republic of China.
| |
Collapse
|
9
|
Du R, Zhao Z, Cui J, Li Y. Manganese-Based Nanotheranostics for Magnetic Resonance Imaging-Mediated Precise Cancer Management. Int J Nanomedicine 2023; 18:6077-6099. [PMID: 37908669 PMCID: PMC10614655 DOI: 10.2147/ijn.s426311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/20/2023] [Indexed: 11/02/2023] Open
Abstract
Manganese (Mn)-based magnetic resonance imaging (MRI) has become a competitive imaging modality for cancer diagnosis due to its advantages of non-invasiveness, high resolution and excellent biocompatibility. In recent years, a variety of Mn contrast agents based on different material systems have been synthesized, and a series of multi-purpose Mn nanocomposites have also emerged, showing satisfactory relaxation efficiency and MRI performance thus possess the transformation and application value in MRI-synergized cancer diagnosis and treatment. This tutorial review starts from the classification and properties of Mn-based nanomaterials, and then summarizes various preparation and functionalization strategies of nanosized Mn contrast agents, especially focuses on the latest progress of Mn contrast agents in MRI-synergized precise cancer theranostics. In addition, present review also discusses the current clinical transformation obstacles such as unclear molecular mechanisms, potential nanotoxicity, and scale production constraints. This paper provides evidence-based recommendations about the future prospects of multifunctional nanoplatforms, as well as technical guidance and panoramic expectations for the design of clinically meaningful cancer management programs.
Collapse
Affiliation(s)
- Ruochen Du
- Department of Laboratory Animal Center, Shanxi Medical University, Taiyuan, Shanxi, 030001, People’s Republic of China
| | - Ziwei Zhao
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, 030001, People’s Republic of China
| | - Jing Cui
- College of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, People’s Republic of China
| | - Yanan Li
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, 030001, People’s Republic of China
| |
Collapse
|
10
|
Zheng S, Hu H, Hou M, Zhu K, Wu Z, Qi L, Xia H, Liu G, Ren Y, Xu Y, Yan C, Zhao B. Proton pump inhibitor-enhanced nanocatalytic ferroptosis induction for stimuli-responsive dual-modal molecular imaging guided cancer radiosensitization. Acta Biomater 2023; 162:72-84. [PMID: 36931419 DOI: 10.1016/j.actbio.2023.03.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/19/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023]
Abstract
Although radiotherapeutic efficiency has been revealed to be positively correlated with ferroptosis, the neutral/alkaline cytoplasm pH value of tumor cells remains an intrinsic challenge for efficient Fenton/Fenton-like reaction-based ferroptosis induction. Herein, PEGylated hollow mesoporous organosilica nanotheranostics (HMON)-GOx@MnO2 nanoparticles (HGMP NPs) were designed as a ferroptosis inducer, which could specifically release Mn2+ in tumor cells to activate the Fenton-like reaction for ferroptosis induction. Proton pump inhibitors (PPIs) were synchronously administered for cytoplasm pH level regulation by inhibiting V-H+-ATPases activity, enhancing Fenton-like reaction-based ferroptosis induction. Moreover, reactive oxygen species production was facilitated via the glucose oxidase triggered cascade catalytic reaction by utilizing intracellular β-D-glucose for H2O2 self-supply and generation of additional cytoplasm H+. The PPI enhanced ferroptosis inducing nanosystem effectively inhibited tumor growth both in vitro and in vivo for tumor-specific ferroptosis induction and radiotherapy sensitization, suggesting that PPI administration could be an efficient adjuvant to reinforce Fenton/Fenton-like reaction-based ferroptosis induction for radiosensitization. STATEMENT OF SIGNIFICANCE: The cytoplasm pH value of tumor cells is typically neutral to alkaline, which is higher than that of the Fenton/Fenton-like reaction desired acidic environments, hindering its efficiency. In this study, PEGylated hollow mesoporous organosilica nanotheranostics (HMON)-GOx@MnO2 nanoparticles were synthesized as a ferroptosis inducer, which could specifically release Mn2+ via depleting glutathione and then activate the Fenton-like reaction in the tumor microenvironment. The glucose oxidase was applied for H2O2 self-supply and addition of cytoplasm H+ to further boost the Fenton-like reaction. We found that proton pump inhibitors (PPIs) increased intracellular acidification by inhibiting the activity of V-H+-ATPases to enhance the Fenton reaction-based ferroptosis induction, suggesting PPIs administration could be a feasible strategy to reinforce ferroptosis induction for radiosensitization.
Collapse
Affiliation(s)
- Shuting Zheng
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China; Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Honglei Hu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China; Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Meirong Hou
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China; Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Kai Zhu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China; Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Zede Wu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China; Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Li Qi
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, PR China
| | - Hui Xia
- Institute of Electrical Engineering Chinese Academy of Sciences, Beijing 100190, PR China
| | - Guoqiang Liu
- Institute of Electrical Engineering Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yunyan Ren
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Yikai Xu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China.
| | - Chenggong Yan
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China.
| | - Bingxia Zhao
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, PR China; Experiment Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
11
|
Lv Y, Kan J, Luo M, Yang C, Luo X, Lin X, Li H, Li X, Li Y, Yang C, Liu Y, Li X. Multifunctional Nanosnowflakes for T1-T2 Double-Contrast Enhanced MRI and PAI Guided Oxygen Self-Supplementing Effective Anti-Tumor Therapy. Int J Nanomedicine 2022; 17:4619-4638. [PMID: 36211026 PMCID: PMC9533148 DOI: 10.2147/ijn.s379526] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/17/2022] [Indexed: 11/30/2022] Open
Abstract
Introduction Accurate tumor diagnosis is essential to achieve the ideal therapeutic effect. However, it is difficult to accurately diagnose cancer using a single imaging method because of the technical limitations. Multimodal imaging plays an increasingly important role in tumor treatment. Photodynamic therapy (PDT) has received widespread attention in tumor treatment due to its high specificity and controllable photocytotoxicity. Nevertheless, PDT is susceptible to tumor microenvironment (TME) hypoxia, which greatly reduces the therapeutic effect of tumor treatment. Methods In this study, a novel multifunctional nano-snowflake probe (USPIO@MnO2@Ce6, UMC) for oxygen-enhanced photodynamic therapy was developed. We have fabricated the honeycomb-like MnO2 to co-load chlorin e6 (Ce6, a photosensitizer) and ultrasmall superparamagnetic iron oxide (USPIO, T1-T2 double contrast agent). Under the high H2O2 level of tumor cells, UMC efficiently degraded and triggered the exposure of photosensitizers to the generated oxygen, accelerating the production of reactive oxygen species (ROS) during PDT. Moreover, the resulting USPIO and Mn2+ allow for MR T1-T2 imaging and transformable PAI for multimodal imaging-guided tumor therapy. Results TEM and UV-vis spectroscopy results showed that nano-snowflake probe (UMC) was successfully synthesized, and the degradation of UMC was due to the pH/ H2O2 responsive properties. In vitro results indicated good uptake of UMC in 4T-1 cells, with maximal accumulation at 4 h. In vitro and in vivo experimental results showed their imaging capability for both T1-T2 MR and PA imaging, providing the potential for multimodal imaging-guided tumor therapy. Compared to the free Ce6, UMC exhibited enhanced treatment efficiency due to the production of O2 with the assistance of 660 nm laser irradiation. In vivo experiments confirmed that UMC achieved oxygenated PDT under MR/PA imaging guidance in tumor-bearing mice and significantly inhibited tumor growth in tumor-bearing mice, exhibiting good biocompatibility and minimal side effects. Conclusion The multimodal imaging contrast agent (UMC) not only can be used for MR and PA imaging but also has oxygen-enhanced PDT capabilities. These results suggest that UMC may have a good potential for further clinical application in the future.
Collapse
Affiliation(s)
- Yijie Lv
- School of Medical Imaging, Binzhou Medical University, Yantai, Shandong, 264003, People’s Republic of China
| | - Junnan Kan
- School of Medical Imaging, Binzhou Medical University, Yantai, Shandong, 264003, People’s Republic of China
| | - Mingfang Luo
- Department of Radiology, Sichuan Provincial People’s Hospital, Chengdu, Sichuan, 610072, People’s Republic of China
| | - Changfeng Yang
- School of Medical Imaging, Binzhou Medical University, Yantai, Shandong, 264003, People’s Republic of China
| | - Xunrong Luo
- Department of Radiology, Sichuan Provincial People’s Hospital, Chengdu, Sichuan, 610072, People’s Republic of China
| | - Xiaoqian Lin
- School of Medical Imaging, Binzhou Medical University, Yantai, Shandong, 264003, People’s Republic of China
| | - Hao Li
- School of Medical Imaging, Binzhou Medical University, Yantai, Shandong, 264003, People’s Republic of China
| | - Xueming Li
- School of Medical Imaging, Binzhou Medical University, Yantai, Shandong, 264003, People’s Republic of China
| | - Yuping Li
- School of Medical Imaging, Binzhou Medical University, Yantai, Shandong, 264003, People’s Republic of China
| | - Caixia Yang
- School of Medical Imaging, Binzhou Medical University, Yantai, Shandong, 264003, People’s Republic of China
| | - Yan Liu
- School of Medical Imaging, Binzhou Medical University, Yantai, Shandong, 264003, People’s Republic of China
| | - Xianglin Li
- School of Medical Imaging, Binzhou Medical University, Yantai, Shandong, 264003, People’s Republic of China
| |
Collapse
|