1
|
Xue ZF, Cheng WC, Wang L, Qin P, Xie YX, Hu W. Applying the first microcapsule-based self-healing microbial-induced calcium carbonate materials to prevent the migration of Pb ions. ENVIRONMENTAL RESEARCH 2023; 239:117423. [PMID: 37858687 DOI: 10.1016/j.envres.2023.117423] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/12/2023] [Accepted: 10/15/2023] [Indexed: 10/21/2023]
Abstract
Lead (Pb) accumulation can lead to serious threats to surrounding environments and damage to the liver and kidneys. In the past few years, microbial-induced carbonate precipitation (MICP) technology has been widely applied to achieve Pb immobilization due to its environmentally friendly nature. However, harsh pH conditions can cause the instability of the carbonate precipitation to degrade or dissolve, increasing the potential of Pb2+ migration into nearby environments. In this study, microcapsule-based self-healing microbial-induced calcium carbonate (MICC) materials were applied to prevent Pb migration. The highest sporulation rate of 95.8% was attained at 7 g/L yeast extract, 10 g/L NH4Cl, and 3.6 g/L Mn2+. In the germination phase, the microcapsule not only prevented the bacterial spores from being threatened by the acid treatment but secured their growth and reproduction. Micro analysis also revealed that cerussite, calcite, and aragonite minerals were present, while extracellular polymeric substances (EPSs) were identified via Fourier transform infrared spectroscopy (FTIR). These results confirm their involvement in combining Pb2+ and Ca2+. The immobilization efficiency of above 90% applied to MICC materials was attained, while it of below 5% applied to no MICC use was attained. The findings explore the potential of applying microcapsule-based self-healing MICC materials to prevent Pb ion migration when the calcium carbonate degrades under harsh pH conditions.
Collapse
Affiliation(s)
- Zhong-Fei Xue
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Wen-Chieh Cheng
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Lin Wang
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Peng Qin
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Yi-Xin Xie
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Wenle Hu
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| |
Collapse
|
2
|
Xie YX, Cheng WC, Wang L, Xue ZF, Xu YL. Biopolymer-assisted enzyme-induced carbonate precipitation for immobilizing Cu ions in aqueous solution and loess. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:116134-116146. [PMID: 37910372 DOI: 10.1007/s11356-023-30665-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/20/2023] [Indexed: 11/03/2023]
Abstract
Wastewater, discharged in copper (Cu) mining and smelting, usually contains a large amount of Cu2+. Immobilizing Cu2+ in aqueous solution and soils is deemed crucial in preventing its migration into surrounding environments. In recent years, the enzyme-induced carbonate precipitation (EICP) has been widely applied to Cu immobilization. However, the effect of Cu2+ toxicity denatures and even inactivates the urease. In the present work, the biopolymer-assisted EICP technology was proposed. The inherent mechanism affecting Cu immobilization was explored through a series of test tube experiments and soil column tests. Results indicated that 4 g/L chitosan may not correspond to a higher immobilization efficiency because it depends as well on surrounding pH conditions. The use of Ca2+ not only played a role in further protecting urease and regulating the environmental pH but also reduced the potential for Cu2+ to migrate into nearby environments when malachite and azurite minerals are wrapped by calcite minerals. The species of carbonate precipitation that are recognized in the numerical simulation and microscopic analysis supported the above claim. On the other hand, UC1 (urease and chitosan colloid) and UC2 (urea and calcium source) grouting reduced the effect of Cu2+ toxicity by transforming the exchangeable state-Cu into the carbonate combination state-Cu. The side effect, induced by 4 g/L chitosan, promoted the copper-ammonia complex formation in the shallow ground, while the acidic environments in the deep ground prevented Cu2+ from coordinating with soil minerals. These badly degraded the immobilization efficiency. The Raman spectroscopy and XRD test results tallied with the above results. The findings shed light on the potential of applying the biopolymer-assisted EICP technology to immobilizing Cu ions in water bodies and sites.
Collapse
Affiliation(s)
- Yi-Xin Xie
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China
| | - Wen-Chieh Cheng
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Lin Wang
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China
| | - Zhong-Fei Xue
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China
| | - Yin-Long Xu
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China
| |
Collapse
|
3
|
Wang L, Cheng WC, Xue ZF, Rahman MM, Xie YX, Hu W. Immobilizing lead and copper in aqueous solution using microbial- and enzyme-induced carbonate precipitation. Front Bioeng Biotechnol 2023; 11:1146858. [PMID: 37051271 PMCID: PMC10083330 DOI: 10.3389/fbioe.2023.1146858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/16/2023] [Indexed: 03/28/2023] Open
Abstract
Inappropriate irrigation could trigger migration of heavy metals into surrounding environments, causing their accumulation and a serious threat to human central nervous system. Traditional site remediation technologies are criticized because they are time-consuming and featured with high risk of secondary pollution. In the past few years, the microbial-induced carbonate precipitation (MICP) is considered as an alternative to traditional technologies due to its easy maneuverability. The enzyme-induced carbonate precipitate (EICP) has attracted attention because bacterial cultivation is not required prior to catalyzing urea hydrolysis. This study compared the performance of lead (Pb) and copper (Cu) remediation using MICP and EICP respectively. The effect of the degree of urea hydrolysis, mass and species of carbonate precipitation, and chemical and thermodynamic properties of carbonates on the remediation efficiency was investigated. Results indicated that ammonium ion (NH4+) concentration reduced with the increase in lead ion (Pb2+) or copper ion (Cu2+) concentration, and for a given Pb2+ or Cu2+ concentration, it was much higher under MICP than EICP. Further, the remediation efficiency against Cu2+ is approximately zero, which is way below that against Pb2+ (approximately 100%). The Cu2+ toxicity denatured and even inactivated the urease, reducing the degree of urea hydrolysis and the remediation efficiency. Moreover, the reduction in the remediation efficiency against Pb2+ and Cu2+ appeared to be due to the precipitations of cotunnite and atacamite respectively. Their chemical and thermodynamic properties were not as good as calcite, cerussite, phosgenite, and malachite. The findings shed light on the underlying mechanism affecting the remediation efficiency against Pb2+ and Cu2+.
Collapse
Affiliation(s)
- Lin Wang
- School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi’an, China
| | - Wen-Chieh Cheng
- School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi’an, China
- *Correspondence: Wen-Chieh Cheng,
| | - Zhong-Fei Xue
- School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi’an, China
| | - Md Mizanur Rahman
- UniSA STEM, SIRM, University of south Australia, Adelaide, SA, Australia
| | - Yi-Xin Xie
- School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi’an, China
| | - Wenle Hu
- School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi’an, China
| |
Collapse
|
4
|
Wang L, Cheng WC, Xue ZF, Zhang B, Lv XJ. Immobilizing of lead and copper using chitosan-assisted enzyme-induced carbonate precipitation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120947. [PMID: 36581237 DOI: 10.1016/j.envpol.2022.120947] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Enzyme-induced carbonate precipitation (EICP) is considered as an environmentally friendly method for immobilizing heavy metals (HMs). The fundamental of the EICP method is to catalyze urea hydrolysis using the urease, discharging CO32- and NH4+. CO32- helps to form carbonates that immobilize HMs afterwards. However, HMs can depress urease activity and reduce the degree of urea hydrolysis. Herein, the potential of applying the chitosan-assisted EICP method to Pb and Cu immobilization was explored. The chitosan addition elevated the degree of urea hydrolysis when subjected to the effect of Cu2+ toxicity where the protective effect, flocculation and adsorption, and the formation of precipitation, play parts in improving the Cu immobilization efficiency. The use of chitosan addition, however, also causes the side effect (copper-ammonia complex formation). Two calcium source additions, CaCl2 and Ca(CH3COO)2, intervened in the test tube experiments not only to prevent pH from raising to values where Cu2+ complexes with NH3 but also to separate the urease enzyme and Cu2+ from each other with the repulsion of charges. The FTIR spectra indicate that the chitosan addition adsorbs Cu2+ through its surface hydroxyl and carboxyl groups, while the SEM images distinguish who the mineral are nucleating with. The findings shed light on the potential of applying the chitosan-assisted EICP method to remedy lead- and copper-rich water bodies.
Collapse
Affiliation(s)
- Lin Wang
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Wen-Chieh Cheng
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Zhong-Fei Xue
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Bin Zhang
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Xin-Jiang Lv
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| |
Collapse
|
5
|
He Y, Liu S, Shen G, Pan M, Cai Y, Yu J. Treatment of engineering waste slurries by microbially induced struvite precipitation mechanisms. Front Bioeng Biotechnol 2023; 11:1109265. [PMID: 36741750 PMCID: PMC9895107 DOI: 10.3389/fbioe.2023.1109265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/06/2023] [Indexed: 01/21/2023] Open
Abstract
With societal development, the growing scale of engineering construction, and the increase in environmental protection requirements, the necessity of engineering waste mud disposal is becoming increasingly prominent. In this study, microbially induced struvite precipitation (MISP) was introduced to treat engineering waste mud. The study mainly focused on: i) the optimal mineralization scheme for microbially induced struvite precipitation, ii) the feasibility of the process and the effect of reaction parameters on treating engineering waste mud with microbially induced struvite precipitation, and iii) the mechanism of microbially induced struvite precipitation in treating engineering waste mud. The results showed that the waste mud could be well treated with 8.36 × 10 6 c e l l ⋅ m L - 1 bacteria, 10 mM urea, 20 mM phosphate buffer, and 25 mM M g C l 2 at pH 7. The kaolin suspension could be effectively flocculated. The flocculation rate reached approximately 87.2% under the optimum mineralization conditions. The flocculation effect was mainly affected by the concentrations of reactants and heavy metals and the suspension pH. The X-ray diffraction (XRD) patterns showed a strong struvite (MAP) diffraction peak. Scanning electron microscopy (SEM) images indicated that under the optimal mineralization conditions, the crystals were large and showed prismatic shapes tilted at both ends with adhered kaolin particles. In summary, this manuscript provides an effective way to treat engineering waste mud, and the findings should have a positive effect on enhancing soil fertility and preventing secondary pollution.
Collapse
Affiliation(s)
- Yuhan He
- College of Civil Engineering, Huaqiao University, Xiamen, China
| | - Shiyu Liu
- College of Civil Engineering, Huaqiao University, Xiamen, China,*Correspondence: Shiyu Liu,
| | - Gangqiang Shen
- College of Civil Engineering, Huaqiao University, Xiamen, China
| | - Muzhi Pan
- Fujian Water Conservancy and Hydropower Engineering Bureau Company Limited, Quanzhou, China
| | - Yanyan Cai
- College of Civil Engineering, Huaqiao University, Xiamen, China
| | - Jin Yu
- College of Civil Engineering, Huaqiao University, Xiamen, China
| |
Collapse
|
6
|
Xue ZF, Cheng WC, Wang L, Xie YX. Catalyzing urea hydrolysis using two-step microbial-induced carbonate precipitation for copper immobilization: Perspective of pH regulation. Front Microbiol 2022; 13:1001464. [PMID: 36187975 PMCID: PMC9522901 DOI: 10.3389/fmicb.2022.1001464] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Microbial induced carbonate precipitation (MICP) has recently applied to immobilize heavy metals toward preventing their threats to public health and sustainable development of surrounding environments. However, for copper metallurgy activities higher copper ion concentrations cause the ureolytic bacteria to lose their activity, leading to some difficulty in forming carbonate precipitation for copper immobilization (referred to also as “biomineralization”). A series test tube experiments were conducted in the present work to investigate the effects of bacterial inoculation and pH conditions on the copper immobilization efficiency. The numerical simulations mainly aimed to compare with the experimental results to verify its applicability. The copper immobilization efficiency was attained through azurite precipitation under pH in a 4–6 range, while due to Cu2+ migration and diffusion, it reduced to zero under pH below 4. In case pH fell within a 7–9 range, the immobilization efficiency was attained via malachite precipitation. The copper-ammonia complexes formation reduced the immobilization efficiency to zero. The reductions were attributed either to the low degree of urea hydrolysis or to inappropriate pH conditions. The findings shed light on the necessity of securing the urease activity and modifying pH conditions using the two-step biomineralization approach while applying the MICP technology to remedy copper-rich water bodies.
Collapse
Affiliation(s)
- Zhong-Fei Xue
- School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi’an, China
| | - Wen-Chieh Cheng
- School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi’an, China
- *Correspondence: Wen-Chieh Cheng,
| | - Lin Wang
- School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi’an, China
| | - Yi-Xin Xie
- School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi’an, China
| |
Collapse
|
7
|
Wang L, Cheng WC, Hu W, Wen S, Shang S. Effect of seepage conditions on the microstructural evolution of loess across north-west China. iScience 2022; 25:104691. [PMID: 35856035 PMCID: PMC9287809 DOI: 10.1016/j.isci.2022.104691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/25/2022] [Accepted: 06/27/2022] [Indexed: 12/01/2022] Open
Abstract
Loess features metastable microstructure and is deemed susceptible to chemical contaminant permeation. However, studies on the loess permeability evolution under water and chemical environments are remarkably limited. In this study, the response of the loess to the water and sodium sulfate seepages was analyzed using the temporal relationship of cations concentration, X-ray diffraction and fluorescence (XRD and XRF), mercury intrusion porosimetry (MIP), and scanning electron microscope (SEM) tests. The permeability evolution characteristics were identified, and its underlying mechanisms were revealed from aspects of the diffuse double layer (DDL) theory and physiochemical actions. The discharge of Mg2+ and precipitation of calcium carbonate, referred also to as the dedolomitization, degraded the macro permeability when subjected to the water seepage test. The salt-induced swelling, induced by the intrusion of Na+ into the DDL, caused an increase in the micropore fraction under the sodium sulfate seepage test, thereby increasing the macro permeability. The k evolution of the loess under the water and Na2SO4 seepages is investigated The dedolomitization takes part in the k degradation under the water seepage The Na+ intrusion into the double layer enhances the k under the Na2SO4 seepage
Collapse
Affiliation(s)
- Lin Wang
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.,Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an 710055, China
| | - Wen-Chieh Cheng
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.,Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an 710055, China
| | - Wenle Hu
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.,Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an 710055, China
| | - Shaojie Wen
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.,Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an 710055, China
| | - Sen Shang
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
8
|
Xue ZF, Cheng WC, Wang L, Wen S. Effects of Bacterial Culture and Calcium Source Addition on Lead and Copper Remediation Using Bioinspired Calcium Carbonate Precipitation. Front Bioeng Biotechnol 2022; 10:889717. [PMID: 35586552 PMCID: PMC9108487 DOI: 10.3389/fbioe.2022.889717] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/30/2022] [Indexed: 11/25/2022] Open
Abstract
Lead and copper ions from wastewater induced by metallurgical processes are accumulated in soils, threatening plant and human health. The bioinspired calcium carbonate precipitation is proven effective in improving the cementation between soil particles. However, studies on capsulizing heavy metal ions using the bioinspired calcium carbonate precipitation are remarkably limited. The present study conducted a series of test tube experiments to investigate the effects of bacterial culture and calcium source addition on the remediation efficiency against lead and copper ions. The calcium carbonate precipitation was reproduced using the Visual MINTEQ software package to reveal the mechanism affecting the remediation efficiency. The degradation in the remediation efficiency against lead ions relies mainly upon the degree of urea hydrolysis. However, higher degrees of urea hydrolysis cause remediation efficiency against copper ions to reduce to zero. Such high degree of urea hydrolysis turns pH surrounding conditions into highly alkaline environments. Therefore, pursuing higher degrees of urea hydrolysis might not be the most crucial factor while remedying copper ions. The findings shed light on the importance of modifying pH surrounding conditions in capsulizing copper ions using the bioinspired calcium carbonate precipitation.
Collapse
Affiliation(s)
- Zhong-Fei Xue
- School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi’an, China
| | - Wen-Chieh Cheng
- School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi’an, China
| | - Lin Wang
- School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi’an, China
| | - Shaojie Wen
- School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi’an, China
| |
Collapse
|
9
|
Wang L, Cheng WC, Xue ZF, Hu W. Effects of the Urease Concentration and Calcium Source on Enzyme-Induced Carbonate Precipitation for Lead Remediation. Front Chem 2022; 10:892090. [PMID: 35601549 PMCID: PMC9118015 DOI: 10.3389/fchem.2022.892090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/25/2022] [Indexed: 12/18/2022] Open
Abstract
Heavy metal contamination during the rapid urbanization process in recent decades has notably impacted our fragile environments and threatens human health. However, traditional remediation approaches are considered time-consuming and costly, and the effect sometimes does not meet the requirements expected. The present study conducted test tube experiments to reproduce enzyme-induced carbonate precipitation applied to lead remediation under the effects of urease concentration and a calcium source. Furthermore, the speciation and sequence of the carbonate precipitation were simulated using the Visual MINTEQ software package. The results indicated that higher urease concentrations can assure the availability of CO3 2- during the enzyme-induced carbonate precipitation (EICP) process toward benefiting carbonate precipitation. The calcium source determines the speciation of carbonate precipitation and subsequently the Pb remediation efficiency. The use of CaO results in the dissolution of Pb(OH)2 and, therefore, discharges Pb ions, causing some difficulty in forming the multi-layer structure of carbonate precipitation and degrading Pb remediation. The findings of this study are useful in widening the horizon of applications of the enzyme-induced carbonate precipitation technology to heavy metal remediation.
Collapse
Affiliation(s)
- Lin Wang
- School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi’an, China
| | - Wen-Chieh Cheng
- School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi’an, China
| | - Zhong-Fei Xue
- School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi’an, China
| | - Wenle Hu
- School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi’an, China
| |
Collapse
|