1
|
Bystrov DA, Volegova DD, Korsakova SA, Salmina AB, Yurchenko SO. Electric Field-Induced Effects in Eukaryotic Cells: Current Progress and Limitations. TISSUE ENGINEERING. PART B, REVIEWS 2025. [PMID: 40279199 DOI: 10.1089/ten.teb.2025.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
Electric fields (EFs) offer a powerful tool for manipulating cells and modulating their behavior, holding significant promise for regenerative medicine and cell biology. We provide a comprehensive overview of the effects of different types of EF on eukaryotic cells with the special focus on physical mechanisms and signaling pathways involved. Direct current EF induces electrophoresis and electroosmosis, influencing cell migration, proliferation, and differentiation. Alternating current EF, through dielectric polarization and dielectrophoresis, enables cell manipulation, trapping, and sorting. Pulsed EF, particularly high-intensity, short-duration pulses, induces reversible and irreversible electroporation, facilitating drug and gene delivery. The review covers some technological aspects of EF generation, emphasizing the importance of experimental setups, and integration with microfluidic platforms for high-throughput analysis and precise manipulations. Furthermore, the synergistic potential of combining EFs with optical tweezers is highlighted, enabling fine-tuned control of cell positioning, intercellular interactions, and measurement of biophysical properties. Finally, the review addresses limitations of EF application, such as field heterogeneity and potential side effects, and outlines the directions for future studies, including developing the minimally invasive delivery methods.
Collapse
Affiliation(s)
- Daniil A Bystrov
- Center "Soft Matter and Physics of Fluids," Bauman Moscow State Technical University, Moscow, Russia
| | - Daria D Volegova
- Center "Soft Matter and Physics of Fluids," Bauman Moscow State Technical University, Moscow, Russia
| | - Sofia A Korsakova
- Center "Soft Matter and Physics of Fluids," Bauman Moscow State Technical University, Moscow, Russia
| | - Alla B Salmina
- Center "Soft Matter and Physics of Fluids," Bauman Moscow State Technical University, Moscow, Russia
- Brain Science Institute, Research Center of Neurology, Moscow, Russia
| | - Stanislav O Yurchenko
- Center "Soft Matter and Physics of Fluids," Bauman Moscow State Technical University, Moscow, Russia
| |
Collapse
|
2
|
Bianconi S, Leppik L, Oppermann E, Marzi I, Henrich D. Direct Current Electrical Stimulation Shifts THP-1-Derived Macrophage Polarization towards Pro-Regenerative M2 Phenotype. Int J Mol Sci 2024; 25:7272. [PMID: 39000377 PMCID: PMC11242703 DOI: 10.3390/ijms25137272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/14/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
A macrophage shift from the M1 to the M2 phenotype is relevant for promoting tissue repair and regeneration. In a previous in vivo study, we found that direct current (DC) electrical stimulation (EStim) increased the proportion of M2 macrophages in healing tissues and directed the balance of the injury response away from healing/scarring towards regeneration. These observations led us to hypothesize that DC EStim regulates macrophage polarization towards an M2 phenotype. THP-1-derived M0, M1 (IFN-γ and LPS), and M2 (IL-4 and IL-13) macrophages were exposed (or not: control group) to 100 mV/mm of DC EStim, 1 h/day for three days. Macrophage polarization was assessed through gene and surface marker expressions and cytokine secretion profiles. Following DC EStim treatment, M0 cells exhibited an upregulation of M2 marker genes IL10, CD163, and PPARG. In M1 cells, DC EStim upregulated the gene expressions of M2 markers IL10, TGM2, and CD206 and downregulated M1 marker gene CD86. EStim treatment also reduced the surface expression of CD86 and secretion of pro-inflammatory cytokines IL-1β and IL-6. Our results suggest that DC EStim differentially exerts pro-M2 effects depending on the macrophage phenotype: it upregulates typical M2 genes in M0 and M1 cells while inhibiting M1 marker CD86 at the nuclear and protein levels and the secretion of pro-inflammatory interleukins in M1 cells. Conversely, M2 cells appear to be less responsive to the EStim treatment employed in this study.
Collapse
Affiliation(s)
- Santiago Bianconi
- Department of Trauma Surgery and Orthopedics, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Liudmila Leppik
- Department of Trauma Surgery and Orthopedics, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Elsie Oppermann
- Department of General, Visceral, Transplant and Thoracic Surgery, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Ingo Marzi
- Department of Trauma Surgery and Orthopedics, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Dirk Henrich
- Department of Trauma Surgery and Orthopedics, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| |
Collapse
|
3
|
Ghaderinia M, Abadijoo H, Mahdavian A, Kousha E, Shakibi R, Taheri SMR, Simaee H, Khatibi A, Moosavi-Movahedi AA, Khayamian MA. Smartphone-based device for point-of-care diagnostics of pulmonary inflammation using convolutional neural networks (CNNs). Sci Rep 2024; 14:6912. [PMID: 38519489 PMCID: PMC10959990 DOI: 10.1038/s41598-024-54939-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/19/2024] [Indexed: 03/25/2024] Open
Abstract
In pulmonary inflammation diseases, like COVID-19, lung involvement and inflammation determine the treatment regime. Respiratory inflammation is typically arisen due to the cytokine storm and the leakage of the vessels for immune cells recruitment. Currently, such a situation is detected by the clinical judgment of a specialist or precisely by a chest CT scan. However, the lack of accessibility to the CT machines in many poor medical centers as well as its expensive service, demands more accessible methods for fast and cheap detection of lung inflammation. Here, we have introduced a novel method for tracing the inflammation and lung involvement in patients with pulmonary inflammation, such as COVID-19, by a simple electrolyte detection in their sputum samples. The presence of the electrolyte in the sputum sample results in the fern-like structures after air-drying. These fern patterns are different in the CT positive and negative cases that are detected by an AI application on a smartphone and using a low-cost and portable mini-microscope. Evaluating 160 patient-derived sputum sample images, this method demonstrated an interesting accuracy of 95%, as confirmed by CT-scan results. This finding suggests that the method has the potential to serve as a promising and reliable approach for recognizing lung inflammatory diseases, such as COVID-19.
Collapse
Affiliation(s)
- Mohammadreza Ghaderinia
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, 1417614335, Iran
- Integrated Biophysics and Bioengineering Lab (iBL), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, 1417614335, Iran
- Nano Electronic Center of Excellence, Nano Bio Electronics Devices Lab, School of Electrical and Computer Engineering, University of Tehran, P.O. Box 14395/515, Tehran, Iran
| | - Hamed Abadijoo
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, 1417614335, Iran
- Integrated Biophysics and Bioengineering Lab (iBL), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, 1417614335, Iran
- Nano Electronic Center of Excellence, Nano Bio Electronics Devices Lab, School of Electrical and Computer Engineering, University of Tehran, P.O. Box 14395/515, Tehran, Iran
| | - Ashkan Mahdavian
- Nano Electronic Center of Excellence, Nano Bio Electronics Devices Lab, School of Electrical and Computer Engineering, University of Tehran, P.O. Box 14395/515, Tehran, Iran
| | - Ebrahim Kousha
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, 1417614335, Iran
- Integrated Biophysics and Bioengineering Lab (iBL), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, 1417614335, Iran
- Nano Electronic Center of Excellence, Nano Bio Electronics Devices Lab, School of Electrical and Computer Engineering, University of Tehran, P.O. Box 14395/515, Tehran, Iran
| | - Reyhaneh Shakibi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - S Mohammad-Reza Taheri
- Groningen university, University medical center Groningen, Antonius Deusinglaan 1, 9713AW, Groningen, The Netherlands
- Condensed Matter National Laboratory, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Hossein Simaee
- Cardiac Primary Prevention Research Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Khatibi
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | | | - Mohammad Ali Khayamian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, 1417614335, Iran.
- Integrated Biophysics and Bioengineering Lab (iBL), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, 1417614335, Iran.
| |
Collapse
|
4
|
Moharamipour S, Aminifar M, Foroughi-Gilvaee MR, Faranoush P, Mahdavi R, Abadijoo H, Parniani M, Abbasvandi F, Mansouri S, Abdolahad M. Hydroelectric actuator for 3-dimensional analysis of electrophoretic and dielectrophoretic behavior of cancer cells; suitable in diagnosis and invasion studies. BIOMATERIALS ADVANCES 2023; 151:213476. [PMID: 37276690 DOI: 10.1016/j.bioadv.2023.213476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 04/29/2023] [Accepted: 05/13/2023] [Indexed: 06/07/2023]
Abstract
Cancer is a cellular-based disease, so cytological diagnosis is one of the main challenges for its early detection. An extensive number of diagnostic methods have been developed to separate cancerous cells from normal ones, in electrical methods attract progressive attention. Identifying and specifying different cells requires understanding their dielectric and electric properties. This study evaluated MDA-MB-231, HUVEC, and MCF-10A cell lines, WBCs isolated from blood, and patient-derived cell samples with a cylindrical body with two transparent FTO (fluorine-doped tin oxide) plate electrodes. Cell mobility rates were recorded in response to these stimuli. It was observed that cancer cells demonstrate drastic changes in their motility in the presence and absence of an electric field (DC/AC). Also, solution viscosity's effect on cancer cells' capturing efficacy was evaluated. This research's main distinguished specification uses a non-microfluidic platform to detect and pathologically evaluate cytological samples with a simple, cheap, and repeatable platform. The capturing procedure was carried out on a cytological slide without any complicated electrode patterning with the ability of cytological staining. Moreover, this platform successfully designed and experimented with the invasion assay (the ability of captured cancer cells to invade normal cells).
Collapse
Affiliation(s)
- Shima Moharamipour
- Nano Bio Electronic Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mina Aminifar
- Nano Bio Electronic Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mohammad Reza Foroughi-Gilvaee
- Nano Bio Electronic Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran; Pediatric Growth and Development Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Pooya Faranoush
- Nano Bio Electronic Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran; Pediatric Growth and Development Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Reihane Mahdavi
- Nano Bio Electronic Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Hamed Abadijoo
- Nano Bio Electronic Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mohammad Parniani
- Pathology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Fereshteh Abbasvandi
- Nano Bio Electronic Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran; ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, P.O. BOX: 15179/64311, Tehran, Iran
| | - Sepideh Mansouri
- Radiation Oncology Research Center (RORC), Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdolahad
- Nano Bio Electronic Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran; UT and TUMS Cancer Electronics Research Center, Tehran University of Medical Sciences, Tehran, Iran; Cancer Institute, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Yang CY, Sun JH, Zhu K, Du J, Zhang Y, Lu CH, Liu WY, Zhang KJ, Zhang AQ, Zeng L, Jiang JX, Li L. Electrotaxis of alveolar epithelial cells in direct-current electric fields. Chin J Traumatol 2023:S1008-1275(23)00020-2. [PMID: 37019724 DOI: 10.1016/j.cjtee.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/25/2023] [Accepted: 03/14/2023] [Indexed: 04/07/2023] Open
Abstract
PURPOSE This study aims to elucidate the electrotaxis response of alveolar epithelial cells (AECs) in direct-current electric fields (EFs), explore the impact of EFs on the cell fate of AECs, and lay the foundation for future exploitation of EFs for the treatment of acute lung injury. METHODS AECs were extracted from rat lung tissues using magnetic-activated cell sorting. To elucidate the electrotaxis responses of AECs, different voltages of EFs (0, 50, 100, and 200 mV/mm) were applied to two types of AECs, respectively. Cell migrations were recorded and trajectories were pooled to better demonstrate cellular activities through graphs. Cell directionality was calculated as the cosine value of the angle formed by the EF vector and cell migration. To further demonstrate the impact of EFs on the pulmonary tissue, the human bronchial epithelial cells transformed with Ad12-SV40 2B (BEAS-2B cells) were obtained and experimented under the same conditions as AECs. To determine the influence on cell fate, cells underwent electric stimulation were collected to perform Western blot analysis. RESULTS The successful separation and culturing of AECs were confirmed through immunofluorescence staining. Compared with the control, AECs in EFs demonstrated a significant directionality in a voltage-dependent way. In general, type Ⅰ alveolar epithelial cells migrated faster than type Ⅱ alveolar epithelial cells, and under EFs, these two types of cells exhibited different response threshold. For type Ⅱ alveolar epithelial cells, only EFs at 200 mV/mm resulted a significant difference to the velocity, whereas for, EFs at both 100 mV/mm and 200 mV/mm gave rise to a significant difference. Western blotting suggested that EFs led to an increased expression of a AKT and myeloid leukemia 1 and a decreased expression of Bcl-2-associated X protein and Bcl-2-like protein 11. CONCLUSION EFs could guide and accelerate the directional migration of AECs and exert antiapoptotic effects, which indicated that EFs are important biophysical signals in the re-epithelialization of alveolar epithelium in lung injury.
Collapse
Affiliation(s)
- Chao-Yue Yang
- Department of Respiratory Medicine, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jian-Hui Sun
- State Key Laboratory of Trauma, Burns, and Combined Injury, Department of Trauma Medical Center, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Kan Zhu
- State Key Laboratory of Trauma, Burns, and Combined Injury, Department of Trauma Medical Center, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Juan Du
- State Key Laboratory of Trauma, Burns, and Combined Injury, Department of Trauma Medical Center, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ying Zhang
- Department of Respiratory Medicine, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Cong-Hua Lu
- Department of Respiratory Medicine, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wen-Yi Liu
- State Key Laboratory of Trauma, Burns, and Combined Injury, Department of Trauma Medical Center, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ke-Jun Zhang
- Department of Outpatients, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - An-Qiang Zhang
- State Key Laboratory of Trauma, Burns, and Combined Injury, Department of Trauma Medical Center, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ling Zeng
- State Key Laboratory of Trauma, Burns, and Combined Injury, Department of Trauma Medical Center, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jian-Xin Jiang
- State Key Laboratory of Trauma, Burns, and Combined Injury, Department of Trauma Medical Center, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Li Li
- Department of Respiratory Medicine, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China; State Key Laboratory of Trauma, Burns, and Combined Injury, Department of Trauma Medical Center, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|