1
|
Zhang X, Zhang H, Liu X, Wang J, Li S, Gao P. Review and Future Perspectives of Stimuli-Responsive Bridged Polysilsesquioxanes in Controlled Release Applications. Polymers (Basel) 2024; 16:3163. [PMID: 39599255 PMCID: PMC11598018 DOI: 10.3390/polym16223163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/31/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Bridged polysilsesquioxanes (BPSs) are emerging biomaterials composed of synergistic inorganic and organic components. These materials have been investigated as ideal carriers for therapeutic and diagnostic systems for their favorable properties, including excellent biocompatibility, physiological inertia, tunable size and morphology, and their extensive design flexibility of functional organic groups to satisfy diverse application requirements. Stimuli-responsive BPSs can be activated by both endogenous and exogenous stimuli, offering a precise, safe, and effective platform for the controlled release of various targeted therapeutics. This review aims to provide a comprehensive overview of stimuli-responsive BPSs, focusing on their synthetic strategies, biocompatibility, and biodegradability, while critically assessing their capabilities for controlled release in response to specific stimuli. Furthermore, practical suggestions and future perspectives for the design and development of BPSs are presented. This review highlights the significant role of stimuli-responsive BPSs in advancing biomedical research.
Collapse
Affiliation(s)
- Xin Zhang
- Shandong Key Laboratory of Digital Traditional Chinese Medicine, Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Han Zhang
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (H.Z.); (J.W.); (S.L.)
| | - Xiaonan Liu
- Shandong Key Laboratory of Digital Traditional Chinese Medicine, Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Jiao Wang
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (H.Z.); (J.W.); (S.L.)
| | - Shifeng Li
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (H.Z.); (J.W.); (S.L.)
| | - Peng Gao
- Shandong Key Laboratory of Digital Traditional Chinese Medicine, Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| |
Collapse
|
2
|
Trayford C, van Rijt S. In situ modified mesoporous silica nanoparticles: synthesis, properties and theranostic applications. Biomater Sci 2024; 12:5450-5467. [PMID: 39371000 PMCID: PMC11457002 DOI: 10.1039/d4bm00094c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 08/29/2024] [Indexed: 10/08/2024]
Abstract
Over the last 20 years, mesoporous silica nanoparticles (MSNs) have drawn considerable attention in the biomedical field due to their large surface area, porous network, biocompatibility, and abundant modification possibilities. In situ MSN modification refers to the incorporation of materials such as alkoxysilanes, ions and nanoparticles (NPs) in the silica matrix during synthesis. Matrix modification is a popular approach for endowing MSNs with additional functionalities such as imaging properties, bioactivity, and degradability, while leaving the mesopores free for drug loading. As such, in situ modified MSNs are considered promising theranostic agents. This review provides an extensive overview of different materials and modification strategies that have been used and their effect on MSN properties. We also highlight how in situ modified MSNs have been applied in theranostic applications, oncology and regenerative medicine. We conclude with perspectives on the future outlooks and current challenges for the widespread clinical use of in situ modified MSNs.
Collapse
Affiliation(s)
- Chloe Trayford
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Sabine van Rijt
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
3
|
Lu Y, Fan L, Wang J, Hu M, Wei B, Shi P, Li J, Feng J, Zheng Y. Cancer Cell Membrane-Based Materials for Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306540. [PMID: 37814370 DOI: 10.1002/smll.202306540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/18/2023] [Indexed: 10/11/2023]
Abstract
The nanodelivery system provides a novel direction for disease diagnosis and treatment; however, its delivery effectiveness is restricted by the short biological half-life and inadequate tumor targeting. The immune evasion properties and homologous targeting capabilities of natural cell membranes, particularly those of cancer cell membranes (CCM), have gained significant interest. The integration of CCM and nanoparticles has resulted in the emergence of CCM-based nanoplatforms (CCM-NPs), which have gained significant attention due to their unique properties. CCM-NPs not only prolong the blood circulation time of core nanoparticles, but also direct them for homologous tumor targeting. Herein, the history and development of CCM-NPs as well as how these platforms have been used for biomedical applications are discussed. The application of CCM-NPs for cancer therapy will be described in detail. Translational efforts are currently under way and further research to address key areas of need will ultimately be required to facilitate the successful clinical adoption of CCM-NPs.
Collapse
Affiliation(s)
- Yongping Lu
- Science and Technologv Innovation Center, Guangyuan Central Hospital, Guangyuan, 628000, China
- Guangyuan Key Laboratory of Multifunctional Medical Hydrogel, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Linming Fan
- Science and Technologv Innovation Center, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Jun Wang
- Science and Technologv Innovation Center, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Mingxiang Hu
- Science and Technologv Innovation Center, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Baogang Wei
- Science and Technologv Innovation Center, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Ping Shi
- Science and Technologv Innovation Center, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| | - Jinyan Feng
- Science and Technologv Innovation Center, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Yu Zheng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
4
|
Mo R, Dawulieti J, Chi N, Wu Z, Yun Z, Du J, Li X, Liu J, Xie X, Xiao K, Chen F, Shao D, Ma K. Self-polymerized platinum (II)-Polydopamine nanomedicines for photo-chemotherapy of bladder Cancer favoring antitumor immune responses. J Nanobiotechnology 2023; 21:235. [PMID: 37481565 PMCID: PMC10362689 DOI: 10.1186/s12951-023-01993-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/09/2023] [Indexed: 07/24/2023] Open
Abstract
Systemic administration of platinum-based drugs has obvious limitations in the treatment of advanced bladder cancer (BC) owing to lower tumor accumulation and uncontrolled release of chemotherapeutics. There is an urgent need for advanced strategies to overcome the current limitations of platinum-based chemotherapy, to achieve maximal therapeutic outcomes with reduced side effects. In this study, self-polymerized platinum (II)-polydopamine nanocomplexes (PtPDs) were tailored for efficient chemo-photoimmunotherapy of BC. PtPDs with high Pt loading content (11.3%) were degradable under the combination of a reductive tumor microenvironment and near-infrared (NIR) light irradiation, thus controlling the release of Pt ions to achieve efficient chemotherapy. In addition, polydopamine promoted stronger photothermal effects to supplement platinum-based chemotherapy. Consequently, PtPDs provided effective chemo-photothermal therapy of MB49 BC in vitro and in vivo, strengthening the immunogenic cell death (ICD) effect and robust anti-tumoral immunity response. When combined with a PD-1 checkpoint blockade, PtPD-based photochemotherapy evoked systemic immune responses that completely suppressed primary and distant tumor growth without inducing systemic toxicities. Our work provides a highly versatile approach through metal-dopamine self-polymerization for the precise delivery of metal-based chemotherapeutic drugs, and may serve as a promising nanomedicine for efficient and safe platinum-based chemotherapy for BC.
Collapse
Affiliation(s)
- Ren Mo
- Department of Urology, Inner Mongolia people's Hospital, Inner Mongolia Urological Institute, Hohhot, Inner Mongolia, 010017, China.
| | - Jianati Dawulieti
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 511442, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong, 510006, China
| | - Ning Chi
- Department of Urology, Inner Mongolia people's Hospital, Inner Mongolia Urological Institute, Hohhot, Inner Mongolia, 010017, China
| | - Ziping Wu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Zhizhong Yun
- Department of Urology, Inner Mongolia people's Hospital, Inner Mongolia Urological Institute, Hohhot, Inner Mongolia, 010017, China
| | - Jianjun Du
- Department of Urology, Inner Mongolia people's Hospital, Inner Mongolia Urological Institute, Hohhot, Inner Mongolia, 010017, China
| | - Xinhua Li
- Department of Urology, Inner Mongolia people's Hospital, Inner Mongolia Urological Institute, Hohhot, Inner Mongolia, 010017, China
| | - Junfeng Liu
- Department of Urology, Inner Mongolia people's Hospital, Inner Mongolia Urological Institute, Hohhot, Inner Mongolia, 010017, China
| | - Xiaochun Xie
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Kai Xiao
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Fangman Chen
- Guangdong Provincial Key Laboratory of Biomedical Engineering Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, Guangdong, 510006, China.
| | - Dan Shao
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Kewei Ma
- Department of Urology, Inner Mongolia people's Hospital, Inner Mongolia Urological Institute, Hohhot, Inner Mongolia, 010017, China.
- Department of Urology, Hohhot First Hospital, Hohhot, Inner Mongolia, 010020, China.
| |
Collapse
|
5
|
Sancho‐Albero M, Facchetti G, Panini N, Meroni M, Bello E, Rimoldi I, Zucchetti M, Frapolli R, De Cola L. Enhancing Pt(IV) Complexes' Anticancer Activity upon Encapsulation in Stimuli-Responsive Nanocages. Adv Healthc Mater 2023; 12:e2202932. [PMID: 36908188 PMCID: PMC11468457 DOI: 10.1002/adhm.202202932] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/27/2023] [Indexed: 03/14/2023]
Abstract
Platinum-based chemotherapy is the first-line treatment for different cancer types, and in particular, for malignant pleural mesothelioma patients (a tumor histotype with urgent medical needs). Herein, a strategy is presented to stabilize, transport, and intracellularly release a platinumIV (PtIV ) prodrug using a breakable nanocarrier. Its reduction, and therefore activation as an anticancer drug, is promoted by the presence of glutathione in neoplastic cells that also causes the destruction of the carrier. The nanocage presents a single internal cavity in which the hydrophobic complex (Pt(dach)Cl2 (OH)2 ), (dach = R,R-diaminocyclohexane) is encapsulated. The in vitro uptake and the internalization kinetics in cancer model cells are evaluated and, using flow cytometry analysis, the successful release and activation of the Pt-based drug inside cancer cells are demonstrated. The in vitro findings are confirmed by the in vivo experiments on a mice model obtained by xenografting MPM487, a patient-derived malignant pleural mesothelioma. MPM487 confirms the well-known resistance of malignant pleural mesothelioma to cisplatin treatment while an interesting 50% reduction of tumor growth is observed when mice are treated with the PtIV , entrapped in the nanocages, at an equivalent dose of the platinum complex.
Collapse
Affiliation(s)
- María Sancho‐Albero
- Department of Biochemistry and Molecular PharmacologyIstituto di Ricerche Farmacologiche Mario Negri IRCCSVia Mario Negri 2Milan20156Italy
| | - Giorgio Facchetti
- Department of Pharmaceutical ScienceDISFARMUniversità degli Studi di MilanoMilan20133Italy
| | - Nicolò Panini
- Laboratory of Cancer PharmacologyDepartment of OncologyIstituto di Ricerche Farmacologiche Mario Negri IRCCSVia Mario Negri 2Milan20156Italy
| | - Marina Meroni
- Laboratory of Cancer PharmacologyDepartment of OncologyIstituto di Ricerche Farmacologiche Mario Negri IRCCSVia Mario Negri 2Milan20156Italy
| | - Ezia Bello
- Laboratory of Cancer PharmacologyDepartment of OncologyIstituto di Ricerche Farmacologiche Mario Negri IRCCSVia Mario Negri 2Milan20156Italy
| | - Isabella Rimoldi
- Department of Pharmaceutical ScienceDISFARMUniversità degli Studi di MilanoMilan20133Italy
| | - Massimo Zucchetti
- Laboratory of Cancer PharmacologyDepartment of OncologyIstituto di Ricerche Farmacologiche Mario Negri IRCCSVia Mario Negri 2Milan20156Italy
| | - Roberta Frapolli
- Laboratory of Cancer PharmacologyDepartment of OncologyIstituto di Ricerche Farmacologiche Mario Negri IRCCSVia Mario Negri 2Milan20156Italy
| | - Luisa De Cola
- Department of Biochemistry and Molecular PharmacologyIstituto di Ricerche Farmacologiche Mario Negri IRCCSVia Mario Negri 2Milan20156Italy
- Department of Pharmaceutical ScienceDISFARMUniversità degli Studi di MilanoMilan20133Italy
| |
Collapse
|
6
|
Lin Q, Peng Y, Wen Y, Li X, Du D, Dai W, Tian W, Meng Y. Recent progress in cancer cell membrane-based nanoparticles for biomedical applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:262-279. [PMID: 36895440 PMCID: PMC9989677 DOI: 10.3762/bjnano.14.24] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Immune clearance and insufficient targeting have limited the efficacy of existing therapeutic strategies for cancer. Toxic side effects and individual differences in response to treatment have further limited the benefits of clinical treatment for patients. Biomimetic cancer cell membrane-based nanotechnology has provided a new approach for biomedicine to overcome these obstacles. Biomimetic nanoparticles exhibit various effects (e.g., homotypic targeting, prolonging drug circulation, regulating the immune system, and penetrating biological barriers) after encapsulation by cancer cell membranes. The sensitivity and specificity of diagnostic methods will also be improved by utilizing the properties of cancer cell membranes. In this review, different properties and functions of cancer cell membranes are presented. Utilizing these advantages, nanoparticles can exhibit unique therapeutic capabilities in various types of diseases, such as solid tumors, hematological malignancies, immune system diseases, and cardiovascular diseases. Furthermore, cancer cell membrane-encapsulated nanoparticles show improved effectiveness and efficiency in combination with current diagnostic and therapeutic methods, which will contribute to the development of individualized treatments. This strategy has promising clinical translation prospects, and the associated challenges are discussed.
Collapse
Affiliation(s)
- Qixiong Lin
- The Ninth Clinical Medical School of Shanxi Medical University, Taiyuan, Shanxi 030009, China
| | - Yueyou Peng
- Department of MRI, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi 030009, China
| | - Yanyan Wen
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaoqiong Li
- Department of MRI, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi 030009, China
| | - Donglian Du
- Department of MRI, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi 030009, China
| | - Weibin Dai
- Department of MRI, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi 030009, China
| | - Wei Tian
- Department of General Surgery, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi 030024, China
| | - Yanfeng Meng
- Department of MRI, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi 030009, China
| |
Collapse
|