1
|
Myszczyszyn A, Muench A, Lehmann V, Sinnige T, van Steenbeek FG, Bouwmeester M, Samsom RA, Keuper-Navis M, van der Made TK, Kogan D, Braem S, van der Laan LJW, Eslami Amirabadi H, van de Steeg E, Masereeuw R, Spee B. A hollow fiber membrane-based liver organoid-on-a-chip model for examining drug metabolism and transport. Biofabrication 2025; 17:025035. [PMID: 40117762 DOI: 10.1088/1758-5090/adc3ce] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 03/21/2025] [Indexed: 03/23/2025]
Abstract
Liver-on-a-chip models predictive for both metabolism, and blood and canalicular transport of drug candidates in humans are lacking. Here, we established a bioengineered and 3Rs-complied (animal component-free) hepatocyte-like millifluidic system based on 3D hollow fiber membranes (HFMs), recombinant human laminin 332 coating and adult human stem cell-derived organoids. Organoid fragments formed polarized and tight monolayers on HFMs with improved hepatocyte-like maturation, as compared to standard 3D organoid cultures in Matrigel from matched donors. Gene expression profiling and immunofluorescence revealed that hepatocyte-like monolayers expressed a broad panel of phase I (e.g. CYP3A4, CYP2D6, CYP2C9) and II (e.g. UGTs, SULTs) drug-metabolizing enzymes and drug transporters (e.g. MDR1, MRP3, OATP1B3). Moreover, statically cultured monolayers displayed phase I and II metabolism of a cocktail of six relevant compounds, including midazolam and 7-hydroxycoumarin. We also demonstrated the disposition of midazolam in the basal/blood-like circulation and apical/canalicular-like compartment of the millifluidic chip. Finally, we studied the bioavailability of midazolam and coumarin on-a-chip in combination with a small intestine-like system. In conclusion, we generated a proof-of-concept liver organoid-on-a-chip model for examining metabolism and transport of drugs, which can be further developed to predict pharmacokinetics' (PK)/absorption, distribution, metabolism and excretion (ADME) profiles in humans.
Collapse
Affiliation(s)
- Adam Myszczyszyn
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Anna Muench
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Vivian Lehmann
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Theo Sinnige
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Frank G van Steenbeek
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Manon Bouwmeester
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Roos-Anne Samsom
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Marit Keuper-Navis
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Thomas K van der Made
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Daniel Kogan
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Sarah Braem
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Evita van de Steeg
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Bart Spee
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
2
|
Durazzo M, Ferro A, Navarro-Tableros VM, Gaido A, Fornengo P, Altruda F, Romagnoli R, Moestrup SK, Calvo PL, Fagoonee S. Current Treatment Regimens and Promising Molecular Therapies for Chronic Hepatobiliary Diseases. Biomolecules 2025; 15:121. [PMID: 39858515 PMCID: PMC11763965 DOI: 10.3390/biom15010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/06/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Chronic hepatobiliary damage progressively leads to fibrosis, which may evolve into cirrhosis and/or hepatocellular carcinoma. The fight against the increasing incidence of liver-related morbidity and mortality is challenged by a lack of clinically validated early-stage biomarkers and the limited availability of effective anti-fibrotic therapies. Current research is focused on uncovering the pathogenetic mechanisms that drive liver fibrosis. Drugs targeting molecular pathways involved in chronic hepatobiliary diseases, such as inflammation, hepatic stellate cell activation and proliferation, and extracellular matrix production, are being developed. Etiology-specific treatments, such as those for hepatitis B and C viruses, are already in clinical use, and efforts to develop new, targeted therapies for other chronic hepatobiliary diseases are ongoing. In this review, we highlight the major molecular changes occurring in patients affected by metabolic dysfunction-associated steatotic liver disease, viral hepatitis (Delta virus), and autoimmune chronic liver diseases (autoimmune hepatitis, primary biliary cholangitis, and primary sclerosing cholangitis). Further, we describe how this knowledge is linked to current molecular therapies as well as ongoing preclinical and clinical research on novel targeting strategies, including nucleic acid-, mesenchymal stromal/stem cell-, and extracellular vesicle-based options. Much clinical development is obviously still missing, but the plethora of promising potential treatment strategies in chronic hepatobiliary diseases holds promise for a future reversal of the current increase in morbidity and mortality in this group of patients.
Collapse
Affiliation(s)
- Marilena Durazzo
- Department of Medical Sciences, University of Turin, C.so A.M. Dogliotti 14, 10126 Turin, Italy; (M.D.); (A.F.); (A.G.); (P.F.)
| | - Arianna Ferro
- Department of Medical Sciences, University of Turin, C.so A.M. Dogliotti 14, 10126 Turin, Italy; (M.D.); (A.F.); (A.G.); (P.F.)
| | - Victor Manuel Navarro-Tableros
- 2i3T, Società per la Gestione dell’Incubatore di Imprese e per il Trasferimento Tecnologico, University of Turin, 10126 Turin, Italy;
| | - Andrea Gaido
- Department of Medical Sciences, University of Turin, C.so A.M. Dogliotti 14, 10126 Turin, Italy; (M.D.); (A.F.); (A.G.); (P.F.)
| | - Paolo Fornengo
- Department of Medical Sciences, University of Turin, C.so A.M. Dogliotti 14, 10126 Turin, Italy; (M.D.); (A.F.); (A.G.); (P.F.)
| | - Fiorella Altruda
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Centre “Guido Tarone”, University of Turin, 10126 Turin, Italy;
| | - Renato Romagnoli
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, University of Turin, Corso Bramante 88-90, 10126 Turin, Italy;
| | - Søren K. Moestrup
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark;
- Department of Clinical Biochemistry, Aarhus University Hospital, 8000 Aarhus, Denmark
| | - Pier Luigi Calvo
- Pediatric Gastroenterology Unit, Regina Margherita Children’s Hospital, Città della Salute e della Scienza, 10126 Turin, Italy;
| | - Sharmila Fagoonee
- Institute for Biostructure and Bioimaging, National Research Council, Molecular Biotechnology Centre “Guido Tarone”, 10126 Turin, Italy
| |
Collapse
|
3
|
Wang Z, Ye S, van der Laan LJ, Schneeberger K, Masereeuw R, Spee B. Chemically Defined Organoid Culture System for Cholangiocyte Differentiation. Adv Healthc Mater 2024; 13:e2401511. [PMID: 39044566 PMCID: PMC11616262 DOI: 10.1002/adhm.202401511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/15/2024] [Indexed: 07/25/2024]
Abstract
Cholangiocyte organoids provide a powerful platform for applications ranging from in vitro modeling to tissue engineering for regenerative medicine. However, their expansion and differentiation are typically conducted in animal-derived hydrogels, which impede the full maturation of organoids into functional cholangiocytes. In addition, these hydrogels are poorly defined and complex, limiting the clinical applicability of organoids. In this study, a novel medium composition combined with synthetic polyisocyanopeptide (PIC) hydrogels to enhance the maturation of intrahepatic cholangiocyte organoids (ICOs) into functional cholangiocytes is utilized. ICOs cultured in the presence of sodium butyrate and valproic acid, a histone deacetylase inhibitor, and a Notch signaling activator, respectively, in PIC hydrogel exhibit a more mature phenotype, as evidenced by increased expression of key cholangiocyte markers, crucial for biliary function. Notably, mature cholangiocyte organoids in PIC hydrogel display apical-out polarity, in contrast to the traditional basal-out polarization of ICOs cultured in Matrigel. Moreover, these mature cholangiocyte organoids effectively model the biliary pro-fibrotic response induced by transforming growth factor beta. Taken together, an animal-free, chemically defined culture system that promotes the ICOs into mature cholangiocytes with apical-out polarity, facilitating regenerative medicine applications and in vitro studies that require access to the apical membrane, is developed.
Collapse
Affiliation(s)
- Zhenguo Wang
- Division of PharmacologyUtrecht Institute for Pharmaceutical SciencesFaculty of ScienceUtrecht UniversityUniversiteitsweg 99Utrecht3584 CGThe Netherlands
- Department of Clinical SciencesFaculty of Veterinary MedicineUtrecht UniversityUppsalalaan 8Utrecht3584 CTThe Netherlands
| | - Shicheng Ye
- Department of Clinical SciencesFaculty of Veterinary MedicineUtrecht UniversityUppsalalaan 8Utrecht3584 CTThe Netherlands
| | - Luc J.W. van der Laan
- Department of SurgeryErasmus MC Transplant InstituteUniversity Medical Center RotterdamDoctor Molewaterplein 40Rotterdam3015 GDThe Netherlands
| | - Kerstin Schneeberger
- Department of Clinical SciencesFaculty of Veterinary MedicineUtrecht UniversityUppsalalaan 8Utrecht3584 CTThe Netherlands
| | - Rosalinde Masereeuw
- Division of PharmacologyUtrecht Institute for Pharmaceutical SciencesFaculty of ScienceUtrecht UniversityUniversiteitsweg 99Utrecht3584 CGThe Netherlands
| | - Bart Spee
- Department of Clinical SciencesFaculty of Veterinary MedicineUtrecht UniversityUppsalalaan 8Utrecht3584 CTThe Netherlands
| |
Collapse
|
4
|
Raz M, Milo T, Glass DS, Mayo A, Alon U. Endocrine gland size is proportional to its target tissue size. iScience 2024; 27:110625. [PMID: 39224518 PMCID: PMC11367476 DOI: 10.1016/j.isci.2024.110625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 06/26/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Endocrine glands secrete hormones into the circulation to target distant tissues and regulate their functions. The qualitative relationship between hormone-secreting organs and their target tissues is well established, but a quantitative approach is currently limited. Quantification is important, as it could allow us to study the endocrine system using engineering concepts of optimality and tradeoffs. In this study, we collected literature data on 24 human hormones secreted from dedicated endocrine cells. We find that the number of endocrine cells secreting a hormone is proportional to the number of its target cells. A single endocrine cell serves approximately 2,000 target cells, a relationship that spans 6 orders of magnitude of cell numbers. This suggests an economic principle of cells working near their maximal capacity, and glands that are no bigger than they need to be.
Collapse
Affiliation(s)
- Moriya Raz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tomer Milo
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - David S. Glass
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Avi Mayo
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Uri Alon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
5
|
Smandri A, Al-Masawa ME, Hwei NM, Fauzi MB. ECM-derived biomaterials for regulating tissue multicellularity and maturation. iScience 2024; 27:109141. [PMID: 38405613 PMCID: PMC10884934 DOI: 10.1016/j.isci.2024.109141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Recent breakthroughs in developing human-relevant organotypic models led to the building of highly resemblant tissue constructs that hold immense potential for transplantation, drug screening, and disease modeling. Despite the progress in fine-tuning stem cell multilineage differentiation in highly controlled spatiotemporal conditions and hosting microenvironments, 3D models still experience naive and incomplete morphogenesis. In particular, existing systems and induction protocols fail to maintain stem cell long-term potency, induce high tissue-level multicellularity, or drive the maturity of stem cell-derived 3D models to levels seen in their in vivo counterparts. In this review, we highlight the use of extracellular matrix (ECM)-derived biomaterials in providing stem cell niche-mimicking microenvironment capable of preserving stem cell long-term potency and inducing spatial and region-specific differentiation. We also examine the maturation of different 3D models, including organoids, encapsulated in ECM biomaterials and provide looking-forward perspectives on employing ECM biomaterials in building more innovative, transplantable, and functional organs.
Collapse
Affiliation(s)
- Ali Smandri
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Maimonah Eissa Al-Masawa
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Ng Min Hwei
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
6
|
Wang Z, Xing C, van der Laan LJW, Verstegen MMA, Spee B, Masereeuw R. Cholangiocyte organoids to study drug-induced injury. Stem Cell Res Ther 2024; 15:78. [PMID: 38475870 DOI: 10.1186/s13287-024-03692-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/07/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Drug induced bile duct injury is a frequently observed clinical problem leading to a wide range of pathological features. During the past decades, several agents have been identified with various postulated mechanisms of bile duct damage, however, mostly still poorly understood. METHODS Here, we investigated the mechanisms of chlorpromazine (CPZ) induced bile duct injury using advanced in vitro cholangiocyte cultures. Intrahepatic cholangiocyte organoids (ICOs) were driven into mature cholangiocyte like cells (CLCs), which were exposed to CPZ under cholestatic or non-cholestatic conditions through the addition of a bile acid cocktail. RESULTS CPZ caused loss of monolayer integrity by reducing expression levels of tight junction protein 1 (TJP1), E-cadherin 1 (CDH1) and lysyl oxidase homolog 2 (LOXL2). Loss of zonula occuludens-1 (ZO-1) and E-cadherin was confirmed by immunostaining after exposure to CPZ and rhodamine-123 leakage further confirmed disruption of the cholangiocyte barrier function. Furthermore, oxidative stress seemed to play a major role in the early damage response by CPZ. The drug also decreased expression of three main basolateral bile acid transporters, ABCC3 (ATP binding cassette subfamily C member 3), SLC51A/B (solute carrier family 51 subunit alpha/beta) and multidrug resistance transporter ABCB1 (ATP binding cassette subfamily B member 1), thereby contributing to bile acid accumulation. CPZ did not induce an inflammatory response by itself, but addition of TNFα revealed a synergistic effect. CONCLUSION These results show that ICOs present a model to identify toxic drugs affecting the bile ducts while providing mechanistic insights into hepatotoxicity.
Collapse
Affiliation(s)
- Zhenguo Wang
- Division of Pharmacology, Faculty of Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Chen Xing
- Division of Pharmacology, Faculty of Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, The Netherlands
| | - Monique M A Verstegen
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, The Netherlands
| | - Bart Spee
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Faculty of Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
7
|
Du Y, de Jong IEM, Gupta K, Waisbourd-Zinman O, Har-Zahav A, Soroka CJ, Boyer JL, Llewellyn J, Liu C, Naji A, Polacheck WJ, Wells RG. Human vascularized bile duct-on-a chip: a multi-cellular micro-physiological system for studying cholestatic liver disease. Biofabrication 2023; 16:015004. [PMID: 37820623 PMCID: PMC10587873 DOI: 10.1088/1758-5090/ad0261] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/22/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
Exploring the pathogenesis of and developing therapies for cholestatic liver diseases such as primary sclerosing cholangitis (PSC) remains challenging, partly due to a paucity ofin vitromodels that capture the complex environments contributing to disease progression and partly due to difficulty in obtaining cholangiocytes. Here we report the development of a human vascularized bile duct-on-a-chip (VBDOC) that uses cholangiocyte organoids derived from normal bile duct tissue and human vascular endothelial cells to model bile ducts and blood vessels structurally and functionally in three dimensions. Cholangiocytes in the duct polarized, formed mature tight junctions and had permeability properties comparable to those measured inex vivosystems. The flow of blood and bile was modeled by perfusion of the cell-lined channels, and cholangiocytes and endothelial cells displayed differential responses to flow. We also showed that the device can be constructed with biliary organoids from cells isolated from both bile duct tissue and the bile of PSC patients. Cholangiocytes in the duct became more inflammatory under the stimulation of IL-17A, which induced peripheral blood mononuclear cells and differentiated Th17 cells to transmigrate across the vascular channel. In sum, this human VBDOC recapitulated the vascular-biliary interface structurally and functionally and represents a novel multicellular platform to study inflammatory and fibrotic cholestatic liver diseases.
Collapse
Affiliation(s)
- Yu Du
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Key Laboratory of Microgravity (National Microgravity Laboratory), Center of Biomechanics and Bioengineering, and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- NSF Science and Technology Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Iris E M de Jong
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- NSF Science and Technology Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Kapish Gupta
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- NSF Science and Technology Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Orit Waisbourd-Zinman
- Institute for Gastroenterology, Nutrition and Liver Diseases, Schneider Children’s Medical Center of Israel, Petach Tikva, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Adi Har-Zahav
- Institute for Gastroenterology, Nutrition and Liver Diseases, Schneider Children’s Medical Center of Israel, Petach Tikva, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Carol J Soroka
- Department of Internal Medicine, Section of Digestive Diseases and Liver Center, Yale University School of Medicine, New Haven, CT, United States of America
| | - James L Boyer
- Department of Internal Medicine, Section of Digestive Diseases and Liver Center, Yale University School of Medicine, New Haven, CT, United States of America
| | - Jessica Llewellyn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- NSF Science and Technology Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Chengyang Liu
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Ali Naji
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, United States of America
| | - William J Polacheck
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, United States of America
| | - Rebecca G Wells
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- NSF Science and Technology Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States of America
| |
Collapse
|
8
|
Li P, Miyamoto D, Huang Y, Adachi T, Hidaka M, Hara T, Soyama A, Matsushima H, Imamura H, Kanetaka K, Gu W, Eguchi S. Three-dimensional human bile duct formation from chemically induced human liver progenitor cells. Front Bioeng Biotechnol 2023; 11:1249769. [PMID: 37671190 PMCID: PMC10475568 DOI: 10.3389/fbioe.2023.1249769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/10/2023] [Indexed: 09/07/2023] Open
Abstract
Background: The intrahepatic bile ducts (BDs) play an important role in the modification and transport of bile, and the integration between the BD and hepatocytes is the basis of the liver function. However, the lack of a source of cholangiocytes limits in vitro research. The aim of the present study was to establish three-dimensional BDs combined with human mature hepatocytes (hMHs) in vitro using chemically induced human liver progenitor cells (hCLiPs) derived from hMHs. Methods: In this study, we formed functional BDs from hCLiPs using hepatocyte growth factor and extracellular matrix. BDs expressed the typical biliary markers CK-7, GGT1, CFTR and EpCAM and were able to transport the bile-like substance rhodamine 123 into the lumen. The established three-dimensional BDs were cocultured with hMHs. These cells were able to bind to the BDs, and the bile acid analog CLF was transported from the culture medium through the hMHs and accumulated in the lumen of the BDs. The BDs generated from the hCLiPs showed a BD function and a physiological system (e.g., the transport of bile within the liver) when they were connected to the hMHs. Conclusion: We present a novel in vitro three-dimensional BD combined with hMHs for study, drug screening and the therapeutic modulation of the cholangiocyte function.
Collapse
Affiliation(s)
- Peilin Li
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Department of Surgery, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Daisuke Miyamoto
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yu Huang
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Department of Surgery, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Tomohiko Adachi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Masaaki Hidaka
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takanobu Hara
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Akihiko Soyama
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hajime Matsushima
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hajime Imamura
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kengo Kanetaka
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Weili Gu
- Department of Surgery, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Susumu Eguchi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
9
|
Park HJ, Choi J, Kim H, Yang DY, An TH, Lee EW, Han BS, Lee SC, Kim WK, Bae KH, Oh KJ. Cellular heterogeneity and plasticity during NAFLD progression. Front Mol Biosci 2023; 10:1221669. [PMID: 37635938 PMCID: PMC10450943 DOI: 10.3389/fmolb.2023.1221669] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a progressive liver disease that can progress to nonalcoholic steatohepatitis (NASH), NASH-related cirrhosis, and hepatocellular carcinoma (HCC). NAFLD ranges from simple steatosis (or nonalcoholic fatty liver [NAFL]) to NASH as a progressive form of NAFL, which is characterized by steatosis, lobular inflammation, and hepatocellular ballooning with or without fibrosis. Because of the complex pathophysiological mechanism and the heterogeneity of NAFLD, including its wide spectrum of clinical and histological characteristics, no specific therapeutic drugs have been approved for NAFLD. The heterogeneity of NAFLD is closely associated with cellular plasticity, which describes the ability of cells to acquire new identities or change their phenotypes in response to environmental stimuli. The liver consists of parenchymal cells including hepatocytes and cholangiocytes and nonparenchymal cells including Kupffer cells, hepatic stellate cells, and endothelial cells, all of which have specialized functions. This heterogeneous cell population has cellular plasticity to adapt to environmental changes. During NAFLD progression, these cells can exert diverse and complex responses at multiple levels following exposure to a variety of stimuli, including fatty acids, inflammation, and oxidative stress. Therefore, this review provides insights into NAFLD heterogeneity by addressing the cellular plasticity and metabolic adaptation of hepatocytes, cholangiocytes, hepatic stellate cells, and Kupffer cells during NAFLD progression.
Collapse
Affiliation(s)
- Hyun-Ju Park
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Juyong Choi
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Hyunmi Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Da-Yeon Yang
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Tae Hyeon An
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Baek-Soo Han
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
- Biodefense Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Sang Chul Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Won Kon Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Kyoung-Jin Oh
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
10
|
Bouwmeester MC, Tao Y, Proença S, van Steenbeek FG, Samsom RA, Nijmeijer SM, Sinnige T, van der Laan LJW, Legler J, Schneeberger K, Kramer NI, Spee B. Drug Metabolism of Hepatocyte-like Organoids and Their Applicability in In Vitro Toxicity Testing. Molecules 2023; 28:molecules28020621. [PMID: 36677681 PMCID: PMC9867526 DOI: 10.3390/molecules28020621] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/22/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Emerging advances in the field of in vitro toxicity testing attempt to meet the need for reliable human-based safety assessment in drug development. Intrahepatic cholangiocyte organoids (ICOs) are described as a donor-derived in vitro model for disease modelling and regenerative medicine. Here, we explored the potential of hepatocyte-like ICOs (HL-ICOs) in in vitro toxicity testing by exploring the expression and activity of genes involved in drug metabolism, a key determinant in drug-induced toxicity, and the exposure of HL-ICOs to well-known hepatotoxicants. The current state of drug metabolism in HL-ICOs showed levels comparable to those of PHHs and HepaRGs for CYP3A4; however, other enzymes, such as CYP2B6 and CYP2D6, were expressed at lower levels. Additionally, EC50 values were determined in HL-ICOs for acetaminophen (24.0−26.8 mM), diclofenac (475.5−>500 µM), perhexiline (9.7−>31.5 µM), troglitazone (23.1−90.8 µM), and valproic acid (>10 mM). Exposure to the hepatotoxicants showed EC50s in HL-ICOs comparable to those in PHHs and HepaRGs; however, for acetaminophen exposure, HL-ICOs were less sensitive. Further elucidation of enzyme and transporter activity in drug metabolism in HL-ICOs and exposure to a more extensive compound set are needed to accurately define the potential of HL-ICOs in in vitro toxicity testing.
Collapse
Affiliation(s)
- Manon C. Bouwmeester
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Regenerative Medicine Center Utrecht, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Yu Tao
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Regenerative Medicine Center Utrecht, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Susana Proença
- Division of Toxicology, Wageningen University, 6700 EA Wageningen, The Netherlands
- Institute for Risk Assessment Sciences, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - Frank G. van Steenbeek
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Regenerative Medicine Center Utrecht, Utrecht University, 3584 CT Utrecht, The Netherlands
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| | - Roos-Anne Samsom
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Regenerative Medicine Center Utrecht, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Sandra M. Nijmeijer
- Institute for Risk Assessment Sciences, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - Theo Sinnige
- Institute for Risk Assessment Sciences, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - Luc J. W. van der Laan
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, 3015 CN Rotterdam, The Netherlands
| | - Juliette Legler
- Institute for Risk Assessment Sciences, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - Kerstin Schneeberger
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Regenerative Medicine Center Utrecht, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Nynke I. Kramer
- Division of Toxicology, Wageningen University, 6700 EA Wageningen, The Netherlands
- Institute for Risk Assessment Sciences, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - Bart Spee
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Regenerative Medicine Center Utrecht, Utrecht University, 3584 CT Utrecht, The Netherlands
- Correspondence:
| |
Collapse
|