1
|
Costa P, Basaglia M, Casella S, Favaro L. Copolymers as a turning point for large scale polyhydroxyalkanoates applications. Int J Biol Macromol 2024; 275:133575. [PMID: 38960239 DOI: 10.1016/j.ijbiomac.2024.133575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/28/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
Traditional plastics reshaped the society thanks to their brilliant properties and cut-price manufacturing costs. However, their protracted durability and limited recycling threaten the environment. Worthy alternatives seem to be polyhydroxyalkanoates, compostable biopolymers produced by several microbes. The most common 3-hydroxybutyrate homopolymer has limited applications calling for copolymers biosynthesis to enhance material properties. As a growing number of researches assess the discovery of novel comonomers, great endeavors are dedicated as well to copolymers production scale-up, where the choice of the microbial carbon source significantly affects the overall economic feasibility. Diving into novel metabolic pathways, engineered strains, and cutting-edge bioprocess strategies, this review aims to survey up-to-date publications about copolymers production, focusing primarily on precursors origins. Specifically, in the core of the review, copolymers precursors have been divided into three categories based on their economic value: the costliest structurally related ones, the structurally unrelated ones, and finally various low-cost waste streams. The combination of cheap biomasses, efficient pretreatment strategies, and robust microorganisms paths the way towards the development of versatile and circular polymers. Conceived to researchers and industries interested in tackling polyhydroxyalkanoates production, this review explores an angle often underestimated yet of prime importance: if PHAs copolymers offer advanced properties and sustainable end-of-life, the feedstock choice for their upstream becomes a major factor in the development of plastic substitutes.
Collapse
Affiliation(s)
- Paolo Costa
- Waste-to-Bioproducts Lab, Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Agripolis, Viale dell'Università, 16, 35020 Legnaro, PD, Italy.
| | - Marina Basaglia
- Waste-to-Bioproducts Lab, Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Agripolis, Viale dell'Università, 16, 35020 Legnaro, PD, Italy.
| | - Sergio Casella
- Waste-to-Bioproducts Lab, Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Agripolis, Viale dell'Università, 16, 35020 Legnaro, PD, Italy.
| | - Lorenzo Favaro
- Waste-to-Bioproducts Lab, Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Agripolis, Viale dell'Università, 16, 35020 Legnaro, PD, Italy; Department of Microbiology, Stellenbosch University, Private Bag X1, 7602 Matieland, South Africa.
| |
Collapse
|
2
|
Hozumi Y, Hachisuka SI, Tomita H, Kikukawa H, Matsumoto K. Engineering of the Long-Main-Chain Monomer-Incorporating Polyhydroxyalkanoate Synthase PhaC AR for the Biosynthesis of Poly[( R)-3-hydroxybutyrate- co-6-hydroxyhexanoate]. Biomacromolecules 2024; 25:2973-2979. [PMID: 38588330 DOI: 10.1021/acs.biomac.4c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Polyhydroxyalkanoate (PHA) synthases (PhaCs) are useful and versatile tools for the production of aliphatic polyesters. Here, the chimeric PHA synthase PhaCAR was engineered to increase its capacity to incorporate unusual 6-hydroxyhexanoate (6HHx) units. Mutations at positions 149 and 314 in PhaCAR were previously found to increase the incorporation of an analogous natural monomer, 3-hydroxyhexanoate (3HHx). We attempted to repurpose the mutations to produce 6HHx-containing polymers. Site-directed saturation mutants at these positions were applied for P(3HB-co-6HHx) synthesis in Escherichia coli. As a result, the N149D and F314Y mutants effectively increased the 6HHx fraction. Moreover, the pairwise NDFY mutation further increased the 6HHx fraction, which reached 22 mol %. This increase was presumably caused by altered enzyme activity rather than altered expression levels, as assessed based on immunoblot analysis. The glass transition temperature and crystallinity of P(3HB-co-6HHx) decreased as the 6HHx fraction increased.
Collapse
Affiliation(s)
- Yuka Hozumi
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, N13W8, Kitaku, Sapporo 060-8628, Japan
| | - Shin-Ichi Hachisuka
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, N13W8, Kitaku, Sapporo 060-8628, Japan
| | - Hiroya Tomita
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, N13W8, Kitaku, Sapporo 060-8628, Japan
| | - Hiroshi Kikukawa
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, N13W8, Kitaku, Sapporo 060-8628, Japan
| | - Ken'ichiro Matsumoto
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, N13W8, Kitaku, Sapporo 060-8628, Japan
| |
Collapse
|
3
|
Huong KH, Orita I, Fukui T. Microaerobic insights into production of polyhydroxyalkanoates containing 3-hydroxyhexanoate via native reverse β-oxidation from glucose in Ralstonia eutropha H16. Microb Cell Fact 2024; 23:21. [PMID: 38221622 PMCID: PMC10788006 DOI: 10.1186/s12934-024-02294-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/01/2024] [Indexed: 01/16/2024] Open
Abstract
BACKGROUND Ralstonia eutropha H16, a facultative chemolitoautotroph, is an important workhorse for bioindustrial production of useful compounds such as polyhydroxyalkanoates (PHAs). Despite the extensive studies to date, some of its physiological properties remain not fully understood. RESULTS This study demonstrated that the knallgas bacterium exhibited altered PHA production behaviors under slow-shaking condition, as compared to its usual aerobic condition. One of them was a notable increase in PHA accumulation, ranging from 3.0 to 4.5-fold in the mutants lacking of at least two NADPH-acetoacetyl-CoA reductases (PhaB1, PhaB3 and/or phaB2) when compared to their respective aerobic counterpart, suggesting the probable existence of (R)-3HB-CoA-providing route(s) independent on PhaBs. Interestingly, PHA production was still considerably high even with an excess nitrogen source under this regime. The present study further uncovered the conditional activation of native reverse β-oxidation (rBOX) allowing formation of (R)-3HHx-CoA, a crucial precursor for poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HHx)], solely from glucose. This native rBOX led to the natural incorporation of 3.9 mol% 3HHx in a triple phaB-deleted mutant (∆phaB1∆phaB1∆phaB2-C2). Gene deletion experiments elucidated that the native rBOX was mediated by previously characterized (S)-3HB-CoA dehydrogenases (PaaH1/Had), β-ketothiolase (BktB), (R)-2-enoyl-CoA hydratase (PhaJ4a), and unknown crotonase(s) and reductase(s) for crotonyl-CoA to butyryl-CoA conversion prior to elongation. The introduction of heterologous enzymes, crotonyl-CoA carboxylase/reductase (Ccr) and ethylmalonyl-CoA decarboxylase (Emd) along with (R)-2-enoyl-CoA hydratase (PhaJ) aided the native rBOX, resulting in remarkably high 3HHx composition (up to 37.9 mol%) in the polyester chains under the low-aerated condition. CONCLUSION These findings shed new light on the robust characteristics of Ralstonia eutropha H16 and have the potential for the development of new strategies for practical P(3HB-co-3HHx) copolyesters production from sugars under low-aerated conditions.
Collapse
Affiliation(s)
- Kai-Hee Huong
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan
| | - Izumi Orita
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan
| | - Toshiaki Fukui
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan.
| |
Collapse
|