1
|
Yu X, Zhang Q, Wang L, Zhang Y, Zhu L. Engineered nanoparticles for imaging and targeted drug delivery in hepatocellular carcinoma. Exp Hematol Oncol 2025; 14:62. [PMID: 40307921 PMCID: PMC12044934 DOI: 10.1186/s40164-025-00658-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 04/18/2025] [Indexed: 05/02/2025] Open
Abstract
Liver cancer, notably hepatocellular carcinoma (HCC), poses a significant global health burden due to its high fatality rates. Conventional antitumor medications face challenges, including poor targeting, high toxicity, and drug resistance, leading to suboptimal clinical outcomes. This review focused on nanoparticle use in diagnosing and delivering medication for HCC, aiming to advance the development of nanomedicines for improved treatment outcomes. As an emerging frontier science and technology, nanotechnology has shown great potential, especially in precision medicine and personalized treatment. The success of nanosystems is attributable to their smaller size, biocompatibility, selective tumor accumulation, and lower toxicity. Nanoparticles, as a central part of nanotechnology innovation, have emerged in the field of medical diagnostics and therapeutics to overcome the various limitations of conventional chemotherapy, thus offering promising applications for improved selectivity, earlier and more precise diagnosis of cancers, personalized treatment, and overcoming drug resistance. Nanoparticles play a crucial role in drug delivery and imaging of HCC, with the body acting as a delivery system to target and deliver drugs or diagnostic reagents to specific organs or tissues, helping to accurately diagnose and target therapies while minimizing damage to healthy tissues. They protect drugs from early degradation and increase their biological half-life.
Collapse
Affiliation(s)
- Xianzhe Yu
- Department of Medical Oncology, Cancer Center & Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
- Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, No. 10 Qinyun Nan Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Qin Zhang
- Department of Postgraduate Students, West China School of Medicine/West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Leibo Wang
- Department of Surgery, Beijing Jishuitan Hospital Guizhou Hospital Guiyang, Guiyang, 550000, Guizhou, The People's Republic of China
| | - Yan Zhang
- Department of Medical Oncology, Cancer Center & Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Lingling Zhu
- Department of Medical Oncology, Cancer Center & Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
2
|
Zhao Y, Wang X, Yang X, Li J, Han B. Insights into the history and trends of nanotechnology for the treatment of hepatocellular carcinoma: a bibliometric-based visual analysis. Discov Oncol 2025; 16:484. [PMID: 40192866 PMCID: PMC11977073 DOI: 10.1007/s12672-025-02145-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 03/13/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Nanotechnology has great potential and advantages in the treatment of hepatocellular carcinoma (HCC), but the research trends and future directions are not yet clear. OBJECTIVES Analyze the development trajectory, research hotspots, and future trends of nanotechnology and HCC research globally in the past 20 years, providing a more comprehensive and intuitive reference for researchers in this field. METHODS Retrieve relevant literature on nanotechnology and HCC research in the Web of Science (WOS) Core Collection database, and conduct bibliometric analysis using software such as CiteSpace, VOSviewer, and SCImago Graphica. RESULTS A total of 852 English publications meeting the criteria were retrieved from the WOS database, with an overall increasing trend in the number of publications and citation frequency over the years. China leads in the number of publications and international collaborations, followed by the USA and India. The most influential research institution is the Chinese Academy of Sciences, the most influential scholar/team is the Rahman, Mahfoozur team, and the journal with the most publications is the International Journal of Nanomedicine. A comprehensive analysis reveals that the current main research directions include new types of nanoparticles, targeted drug delivery systems, photothermal/photodynamic therapy, gene delivery systems, diagnostics, and imaging. It is anticipated that further collaboration among scholars, institutions, and countries will accelerate the development of nanotechnology in the field of HCC research. CONCLUSION This study provides an in-depth analysis of the research status and development trends of nanotechnology in treating HCC from a bibliometric perspective, offering possible guidance for researchers to explore hot topics and frontiers, select suitable journals, and partners in this field.
Collapse
Affiliation(s)
- Yulei Zhao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Xingxin Wang
- College of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xiaoman Yang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Jiaheng Li
- College of Health, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Bingbing Han
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China.
| |
Collapse
|
3
|
Cai L, Du Y, Xiong H, Zheng H. Application of nanotechnology in the treatment of hepatocellular carcinoma. Front Pharmacol 2024; 15:1438819. [PMID: 39679376 PMCID: PMC11637861 DOI: 10.3389/fphar.2024.1438819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024] Open
Abstract
Hepatocellular carcinoma is the predominant histologic variant of hepatic malignancy and has become a major challenge to global health. The increasing incidence and mortality of hepatocellular carcinoma has created an urgent need for effective prevention, diagnosis, and treatment strategies. This is despite the impressive results of multiple treatments in the clinic. However, the unique tumor immunosuppressive microenvironment of hepatocellular carcinoma increases the difficulty of treatment and immune tolerance. In recent years, the application of nanoparticles in the treatment of hepatocellular carcinoma has brought new hope for tumor patients. Nano agents target tumor-associated fibroblasts, regulatory T cells, myeloid suppressor cells, tumor-associated macrophages, tumor-associated neutrophils, and immature dendritic cells, reversed the immunosuppressive microenvironment of hepatocellular carcinoma. In addition, he purpose of this review is to summarize the advantages of nanotechnology in guiding surgical excision, local ablation, TACE, standard chemotherapy, and immunotherapy, application of nano-vaccines has also continuously enriched the treatment of liver cancer. This study aims to investigate the potential applications of nanotechnology in the management of hepatocellular carcinoma, with the ultimate goal of enhancing therapeutic outcomes and improving the prognosis for patients affected by this malignancy.
Collapse
Affiliation(s)
| | | | | | - Honggang Zheng
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Escutia-Gutiérrez R, Sandoval-Rodríguez A, Zamudio-Ojeda A, Guevara-Martínez SJ, Armendáriz-Borunda J. Advances of Nanotechnology in the Diagnosis and Treatment of Hepatocellular Carcinoma. J Clin Med 2023; 12:6867. [PMID: 37959332 PMCID: PMC10647688 DOI: 10.3390/jcm12216867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023] Open
Abstract
Nanotechnology has emerged as a promising technology in the field of hepatocellular carcinoma (HCC), specifically in the implementation of diagnosis and treatment strategies. Nanotechnology-based approaches, such as nanoparticle-based contrast agents and nanoscale imaging techniques, have shown great potential for enhancing the sensitivity and specificity of HCC detection. These approaches provide high-resolution imaging and allow for the detection of molecular markers and alterations in cellular morphology associated with HCC. In terms of treatment, nanotechnology has revolutionized HCC therapy by enabling targeted drug delivery, enhancing therapeutic efficacy, and minimizing off-target effects. Nanoparticle-based drug carriers can be functionalized with ligands specific to HCC cells, allowing for selective accumulation of therapeutic agents at the tumor site. Furthermore, nanotechnology can facilitate combination therapy by co-encapsulating multiple drugs within a single nanoparticle, allowing for synergistic effects and overcoming drug resistance. This review aims to provide an overview of recent advances in nanotechnology-based approaches for the diagnosis and treatment of HCC. Further research is needed to optimize the design and functionality of nanoparticles, improve their biocompatibility and stability, and evaluate their long-term safety and efficacy. Nonetheless, the integration of nanotechnology in HCC management holds great promise and may lead to improved patient outcomes in the future.
Collapse
Affiliation(s)
- Rebeca Escutia-Gutiérrez
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Mexico; (R.E.-G.); (A.S.-R.)
| | - Ana Sandoval-Rodríguez
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Mexico; (R.E.-G.); (A.S.-R.)
| | - Adalberto Zamudio-Ojeda
- Department of Physics, Exact Sciences and Engineering University Center, University of Guadalajara, Guadalajara 44340, Mexico;
| | - Santiago José Guevara-Martínez
- Department of Physics, Exact Sciences and Engineering University Center, University of Guadalajara, Guadalajara 44340, Mexico;
| | - Juan Armendáriz-Borunda
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Mexico; (R.E.-G.); (A.S.-R.)
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Zapopan 45201, Mexico
| |
Collapse
|
5
|
Liu T, Liu L, Li L, Cai J. Exploiting targeted nanomedicine for surveillance, diagnosis, and treatment of hepatocellular carcinoma. Mater Today Bio 2023; 22:100766. [PMID: 37636988 PMCID: PMC10457457 DOI: 10.1016/j.mtbio.2023.100766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/26/2023] [Accepted: 08/05/2023] [Indexed: 08/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the cancers that has the highest morbidity and mortality rates. In clinical practice, there are still many limitations in surveilling, diagnosing, and treating HCC, such as the poor detection of early HCC, the frequent post-surgery recurrence, the low local tumor control rate, the therapy resistance and side effects. Therefore, improved, or innovative modalities are urgently required for early diagnosis as well as refined and effective management. In recent years, nanotechnology research in the field of HCC has received great attention, with various aspects of diagnosis and treatment including biomarkers, ultrasound, diagnostic imaging, intraoperative imaging, ablation, transarterial chemoembolization, radiotherapy, and systemic therapy. Different from previous reviews that discussed from the perspective of nanoparticles' structure, design and function, this review systematically summarizes the methods and limitations of diagnosing and treating HCC in clinical guidelines and practices, as well as nanomedicine applications. Nanomedicine can overcome the limitations to improve diagnosis accuracy and therapeutic effect via enhancement of targeting, biocompatibility, bioavailability, controlled releasing, and combination of different clinical treatment modalities. Through an in-depth understanding of the logic of nanotechnology to conquer clinical limitations, the main research directions of nanotechnology in HCC are sorted out in this review. It is anticipated that nanomedicine will play a significant role in the future clinical practices of HCC.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Medical Imaging, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510000, China
| | - Li Liu
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, 518000, China
| | - Li Li
- Department of Medical Imaging, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510000, China
| | - Jing Cai
- Department of Medical Imaging, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510000, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510000, PR China
| |
Collapse
|
6
|
Zhu G, Gao B, Fan J, Chen J, Su S, Yang X, Li B, Fang C. ICG-mediated fluorescence-assisted debridement to promote wound healing. PLoS One 2023; 18:e0291508. [PMID: 37733658 PMCID: PMC10513195 DOI: 10.1371/journal.pone.0291508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/30/2023] [Indexed: 09/23/2023] Open
Abstract
The purpose of this study was to examine the efficacy of ICG-mediated fluorescence molecular imaging (FMI) in debridement of necrotic tissue. 96 wound-infected rats were randomly divided into control group, ICG group, excitation light (EL)group and FMI group for debridement of necrotic tissue (n = 24). (I) Control group: only debridement; (II) ICG group: ICG injection before debridement; (III) EL group: Debridement under EL; (IV) FMI group: Debridement guided by ICG-mediated FMI. On the 3rd, 6th, and 9th days, the wound tissues of the rats in each group were collected for histological examination, and the levels of serum interleukin-4 (IL-4) and interferon-γ (INF-γ) were analyzed. The wound healing rate, wound score and body weight of the rats in each group were followed up until the wound healed. The results showed that the infected wounds of the rats in the FMI group had significant fluorescence development. The level of serum IL-4 in the FMI group was higher than that in the other three groups on the 6th day (p<0.01), while the level of INF-γ was lower than that in the other three groups on the 6th and 9th day (p<0.05). The results of dynamic wound tissue H&E staining indicated that the wound healing in the FMI group was better than the other three groups. The in vivo follow-up results showed that the wound healing rate and wound score of the FMI group were better than the other three groups, and the growth of rats had no difference with the other groups. ICG-mediated FMI can achieve accurate imaging of necrotic tissue for debridement, and so can accelerate wound healing, which has good clinical application prospects.
Collapse
Affiliation(s)
- Gang Zhu
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
- Department of Hepatobiliary Pancreatic and Splenic Surgery, Luzhou People’s Hospital, Luzhou, China
| | - Benjian Gao
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, China
| | - Jun Fan
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, China
| | - Jianfei Chen
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, China
| | - Song Su
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, China
| | - Xiaoli Yang
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, China
| | - Bo Li
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, China
| | - Cheng Fang
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, China
| |
Collapse
|
7
|
Shi X, Xu D, Cheng H, Chu C, Liu G. Recent Advances in Interventional Fluorescence Imaging: Toward the Precise Visualization of Transarterial Mini-Invasive Delivery Systems. ACCOUNTS OF MATERIALS RESEARCH 2023; 4:251-263. [DOI: 10.1021/accountsmr.2c00195] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Affiliation(s)
- Xiaoxiao Shi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Dazhuang Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Hongwei Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Chengchao Chu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| |
Collapse
|
8
|
Chen J, Li D, Li H, Zhu K, Shi L, Fu X. Cell membrane-targeting NIR fluorescent probes with large Stokes shifts for ultralong-term transplanted neural stem cell tracking. Front Bioeng Biotechnol 2023; 11:1139668. [PMID: 36845195 PMCID: PMC9948019 DOI: 10.3389/fbioe.2023.1139668] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 01/20/2023] [Indexed: 02/11/2023] Open
Abstract
There is an emerging therapeutic strategy to transplant stem cells into diseased host tissue for various neurodegenerative diseases, owing to their self-renewal ability and pluripotency. However, the traceability of long-term transplanted cells limits the further understanding of the mechanism of the therapy. Herein, we designed and synthesized a quinoxalinone scaffold-based near-infrared (NIR) fluorescent probe named QSN, which exhibits ultra-strong photostability, large Stokes shift, and cell membrane-targeting capacity. It could be found that QSN-labeled human embryonic stem cells showed strong fluorescent emission and photostability both in vitro and in vivo. Additionally, QSN would not impair the pluripotency of embryonic stem cells, indicating that QSN did not perform cytotoxicity. Moreover, it is worth mentioning that QSN-labeled human neural stem cells held cellular retention for at least 6 weeks in the mouse brain striatum post transplantation. All these findings highlight the potential application of QSN for ultralong-term transplanted cell tracking.
Collapse
Affiliation(s)
- Jing Chen
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Dan Li
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Hongfu Li
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Kongkai Zhu
- Advanced Medical Research Institute, Shandong University, Jinan, China,*Correspondence: Kongkai Zhu, ; Leilei Shi, ; Xuemei Fu,
| | - Leilei Shi
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China,*Correspondence: Kongkai Zhu, ; Leilei Shi, ; Xuemei Fu,
| | - Xuemei Fu
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China,*Correspondence: Kongkai Zhu, ; Leilei Shi, ; Xuemei Fu,
| |
Collapse
|
9
|
Li Z, Cheng H, Mao J, Liu G. Conversion therapy of intermediate and advanced hepatocellular carcinoma using superstable homogeneous iodinated formulation technology. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2114-2117. [PMID: 36040705 DOI: 10.1007/s11427-022-2142-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Zhenjie Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Hongwei Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jingsong Mao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China.
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
10
|
Peng Y, He P, Gao X, Liu G, Cheng H. A Superstable Homogeneous Lipiodol-Nanoformulation to Overcome the Dilemma of Interventional Embolization Chemotherapy. Front Bioeng Biotechnol 2022; 10:952194. [PMID: 35800328 PMCID: PMC9253561 DOI: 10.3389/fbioe.2022.952194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/03/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
| | | | | | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Hongwei Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|