1
|
Chen F, Wu P, Zhang H, Sun G. Signaling Pathways Triggering Therapeutic Hydrogels in Promoting Chronic Wound Healing. Macromol Biosci 2024; 24:e2300217. [PMID: 37831962 DOI: 10.1002/mabi.202300217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/08/2023] [Indexed: 10/15/2023]
Abstract
In recent years, there has been a significant increase in the prevalence of chronic wounds, such as pressure ulcers, diabetic foot ulcers, and venous ulcers of the lower extremities. The main contributors to chronic wound formation are bacterial infection, prolonged inflammation, and peripheral vascular disease. However, effectively treating these chronic wounds remains a global challenge. Hydrogels have extensively explored as wound healing dressing because of their excellent biocompatibility and structural similarity to extracellular matrix (ECM). Nonetheless, much is still unknown how the hydrogels promote wound repair and regeneration. Signaling pathways play critical roles in wound healing process by controlling and coordinating cells and biomolecules. Hydrogels, along with their therapeutic ingredients that impact signaling pathways, have the potential to significantly enhance the wound healing process and its ultimate outcomes. Understanding this interaction will undoubtedly provide new insights into developing advanced hydrogels for wound repair and regeneration. This paper reviews the latest studies on classical signaling pathways and potential targets influenced by hydrogel scaffolds in chronic wound healing. This work hopes that it will offer a different perspective in developing more efficient hydrogels for treating chronic wounds.
Collapse
Affiliation(s)
- Fang Chen
- Hebei Provincial Key Laboratory of Skeletal Metabolic Physiology of Chronic Kidney Disease, Affiliated Hospital of Hebei University, Baoding, 071000, China
- First Department of Bone Injury, Luzhou Municipal Hospital of Traditional Chinese Medicine, Luzhou, Sichuan, 646000, China
| | - Pingli Wu
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China
| | - Haisong Zhang
- Hebei Provincial Key Laboratory of Skeletal Metabolic Physiology of Chronic Kidney Disease, Affiliated Hospital of Hebei University, Baoding, 071000, China
| | - Guoming Sun
- Sunogel Biotechnologies Inc., Lutherville Timonium, 9 W Ridgely Road Ste 270, Maryland, 21093, USA
| |
Collapse
|
2
|
Zheng Y, Pan C, Xu P, Liu K. Hydrogel-mediated extracellular vesicles for enhanced wound healing: the latest progress, and their prospects for 3D bioprinting. J Nanobiotechnology 2024; 22:57. [PMID: 38341585 PMCID: PMC10858484 DOI: 10.1186/s12951-024-02315-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Extracellular vesicles have shown promising tissue recovery-promoting effects, making them increasingly sought-after for their therapeutic potential in wound treatment. However, traditional extracellular vesicle applications suffer from limitations such as rapid degradation and short maintenance during wound administration. To address these challenges, a growing body of research highlights the role of hydrogels as effective carriers for sustained extracellular vesicle release, thereby facilitating wound healing. The combination of extracellular vesicles with hydrogels and the development of 3D bioprinting create composite hydrogel systems boasting excellent mechanical properties and biological activity, presenting a novel approach to wound healing and skin dressing. This comprehensive review explores the remarkable mechanical properties of hydrogels, specifically suited for loading extracellular vesicles. We delve into the diverse sources of extracellular vesicles and hydrogels, analyzing their integration within composite hydrogel formulations for wound treatment. Different composite methods as well as 3D bioprinting, adapted to varying conditions and construction strategies, are examined for their roles in promoting wound healing. The results highlight the potential of extracellular vesicle-laden hydrogels as advanced therapeutic tools in the field of wound treatment, offering both mechanical support and bioactive functions. By providing an in-depth examination of the various roles that these composite hydrogels can play in wound healing, this review sheds light on the promising directions for further research and development. Finally, we address the challenges associated with the application of composite hydrogels, along with emerging trends of 3D bioprinting in this domain. The discussion covers issues such as scalability, regulatory considerations, and the translation of this technology into practical clinical settings. In conclusion, this review underlines the significant contributions of hydrogel-mediated extracellular vesicle therapy to the field of 3D bioprinting and wound healing and tissue regeneration. It serves as a valuable resource for researchers and practitioners alike, fostering a deeper understanding of the potential benefits, applications, and challenges involved in utilizing composite hydrogels for wound treatment.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| | - Chuqiao Pan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| | - Peng Xu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China.
| | - Kai Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China.
| |
Collapse
|
3
|
Liao Y, Zhang Z, Ouyang L, Mi B, Liu G. Engineered Extracellular Vesicles in Wound Healing: Design, Paradigms, and Clinical Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307058. [PMID: 37806763 DOI: 10.1002/smll.202307058] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/20/2023] [Indexed: 10/10/2023]
Abstract
The severe quality of life and economic burden imposed by non-healing skin wounds, infection risks, and treatment costs are affecting millions of patients worldwide. To mitigate these challenges, scientists are relentlessly seeking effective treatment measures. In recent years, extracellular vesicles (EVs) have emerged as a promising cell-free therapy strategy, attracting extensive attention from researchers. EVs mediate intercellular communication, possessing excellent biocompatibility and stability. These features make EVs a potential tool for treating a plethora of diseases, including those related to wound repair. However, there is a growing focus on the engineering of EVs to overcome inherent limitations such as low production, relatively fixed content, and targeting capabilities of natural EVs. This engineering could improve both the effectiveness and specificity of EVs in wound repair treatments. In light of this, the present review will introduce the latest progress in the design methods and experimental paradigms of engineered EVs applied in wound repair. Furthermore, it will comprehensively analyze the current clinical research status and prospects of engineered EVs within this field.
Collapse
Affiliation(s)
- Yuheng Liao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Zhenhe Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Lizhi Ouyang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| |
Collapse
|
4
|
Wang Y, Yang Y, Song Y. Cardioprotective Effects of Exercise: The Role of Irisin and Exosome. Curr Vasc Pharmacol 2024; 22:316-334. [PMID: 38808716 DOI: 10.2174/0115701611285736240516101803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/14/2024] [Accepted: 04/16/2024] [Indexed: 05/30/2024]
Abstract
Exercise is an effective measure for preventing and treating cardiovascular diseases, although the exact molecular mechanism remains unknown. Previous studies have shown that both irisin and exosomes can improve the course of cardiovascular disease independently. Therefore, it is speculated that the cardiovascular protective effect of exercise is also related to its ability to regulate the concentrations of irisin and exosomes in the circulatory system. In this review, the potential synergistic interactions between irisin and exosomes are examined, as well as the underlying mechanisms including the AMPK/PI3K/AKT pathway, the TGFβ1/Smad2/3 pathway, the PI3K/AKT/VEGF pathway, and the PTEN/PINK1/Parkin pathway are examined. This paper provides evidence to propose that exercise promotes the release of exosomes enriched with irisin, miR-486-5p and miR-342-5p from skeletal muscles, which results in the activation protective networks in the cardiovascular system. Moreover, the potential synergistic effect in exosomal cargo can provide new ideas for clinical research of exercise mimics.
Collapse
Affiliation(s)
- Yuehuan Wang
- Graduate School, Wuhan Sports University, Wuhan, 430079, China
- College of Sports Medicine, Wuhan Sports University, Wuhan, 430079, China
| | - Yi Yang
- Fitness Monitoring and Chronic Disease Intervention research center, Wuhan Sports University, Wuhan, 430079, China
- Hubei Key Laboratory of Exercise Training and Monitoring, Wuhan Sports University, Wuhan, 430079, China
| | - Yanjuan Song
- Graduate School, Wuhan Sports University, Wuhan, 430079, China
- College of Sports Medicine, Wuhan Sports University, Wuhan, 430079, China
| |
Collapse
|
5
|
Pereira M, Pinto J, Arteaga B, Guerra A, Jorge RN, Monteiro FJ, Salgado CL. A Comprehensive Look at In Vitro Angiogenesis Image Analysis Software. Int J Mol Sci 2023; 24:17625. [PMID: 38139453 PMCID: PMC10743557 DOI: 10.3390/ijms242417625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
One of the complex challenges faced presently by tissue engineering (TE) is the development of vascularized constructs that accurately mimic the extracellular matrix (ECM) of native tissue in which they are inserted to promote vessel growth and, consequently, wound healing and tissue regeneration. TE technique is characterized by several stages, starting from the choice of cell culture and the more appropriate scaffold material that can adequately support and supply them with the necessary biological cues for microvessel development. The next step is to analyze the attained microvasculature, which is reliant on the available labeling and microscopy techniques to visualize the network, as well as metrics employed to characterize it. These are usually attained with the use of software, which has been cited in several works, although no clear standard procedure has been observed to promote the reproduction of the cell response analysis. The present review analyzes not only the various steps previously described in terms of the current standards for evaluation, but also surveys some of the available metrics and software used to quantify networks, along with the detection of analysis limitations and future improvements that could lead to considerable progress for angiogenesis evaluation and application in TE research.
Collapse
Affiliation(s)
- Mariana Pereira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.P.); (J.P.); (B.A.); (F.J.M.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Jéssica Pinto
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.P.); (J.P.); (B.A.); (F.J.M.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Belén Arteaga
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.P.); (J.P.); (B.A.); (F.J.M.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- Faculty of Medicine, University of Granada, Parque Tecnológico de la Salud, Av. de la Investigación 11, 18016 Granada, Spain
| | - Ana Guerra
- INEGI—Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, 4200-465 Porto, Portugal; (A.G.); (R.N.J.)
| | - Renato Natal Jorge
- INEGI—Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, 4200-465 Porto, Portugal; (A.G.); (R.N.J.)
- LAETA—Laboratório Associado de Energia, Transportes e Aeronáutica, Universidade do Porto, 4200-165 Porto, Portugal
- FEUP—Faculdade de Engenharia, Departamento de Engenharia Metalúrgica e de Materiais, Universidade do Porto, 4200-165 Porto, Portugal
| | - Fernando Jorge Monteiro
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.P.); (J.P.); (B.A.); (F.J.M.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- FEUP—Faculdade de Engenharia, Departamento de Engenharia Metalúrgica e de Materiais, Universidade do Porto, 4200-165 Porto, Portugal
- PCCC—Porto Comprehensive Cancer Center, 4200-072 Porto, Portugal
| | - Christiane Laranjo Salgado
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.P.); (J.P.); (B.A.); (F.J.M.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|