1
|
Delgado RT, Ferreira Filho RDS, Mendes CRB. The Cyanobacteria Genus Aphanothece: Bioactive Compounds and Applications in Biotechnology. Appl Biochem Biotechnol 2025:10.1007/s12010-025-05221-4. [PMID: 40178699 DOI: 10.1007/s12010-025-05221-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2025] [Indexed: 04/05/2025]
Abstract
Aphanothece is a genus of colonial cyanobacteria with a global distribution that is found in various aquatic and terrestrial environments. It has garnered interest because of its high content of amino acids, carbohydrates, fatty acids, and pigments, which possess bioactive and biotechnological properties. This review analyzes articles highlighting Aphanothece species in biotechnological contexts and describes their biochemical composition. Among its primary metabolites are glutamic acid, alanine, palmitic acid, chlorophyll a, echinenone, and β-carotene. The biotechnological potential of Aphanothece spans the fields of biofuel, health, agro-industry, and bioremediation. The notable bioactivities of species such us A. sacrum, A. pallida, and A. bullosa include photoprotective, immunostimulant, antimicrobial, anticancer, and biostimulant activities due to secondary metabolites such as mycosporine-like amino acids, peptides, betaines, and glycerophospholipids. The high production of hydrogen and lipids by A. halophytica supports its use in biofuels. Species such as A. microscopica are effective at treating agro-industrial and domestic effluents and water polluted by metals and hydrocarbons, alongside simultaneous CO2 capture. This review provides information that can guide the sustainable use of Aphanothece species and identifies gaps in current knowledge, particularly in the development of commercial products. Continuous exploration of this genus can significantly promote environmental sustainability and biotechnological innovation.
Collapse
Affiliation(s)
- Ronald Tarazona Delgado
- Laboratory of Phytoplankton and Marine Microorganisms, Institute of Oceanography, Federal University of Rio Grande, Av. Itália, km 08, Rio Grande, RS, 96201-900, Brazil.
- Postgraduate Program in Biological Oceanography, Institute of Oceanography, Federal University of Rio Grande, Av. Itália, km 8, Rio Grande, RS, 96203-900, Brazil.
| | - Rui Dos Santos Ferreira Filho
- Bioprocess Engineering Laboratory, School of Chemistry and Food, Federal University of Rio Grande, Av. Itália, km 08, Rio Grande, RS, 96203-900, Brazil
| | - Carlos Rafael Borges Mendes
- Laboratory of Phytoplankton and Marine Microorganisms, Institute of Oceanography, Federal University of Rio Grande, Av. Itália, km 08, Rio Grande, RS, 96201-900, Brazil
- Postgraduate Program in Biological Oceanography, Institute of Oceanography, Federal University of Rio Grande, Av. Itália, km 8, Rio Grande, RS, 96203-900, Brazil
| |
Collapse
|
2
|
Chinchusak N, Incharoensakdi A, Phunpruch S. Dark fermentative hydrogen production and transcriptional analysis of genes involved in the unicellular halotolerant cyanobacterium Aphanothece halophytica under nitrogen and potassium deprivation. Front Bioeng Biotechnol 2023; 10:1028151. [PMID: 36686224 PMCID: PMC9852855 DOI: 10.3389/fbioe.2022.1028151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
The unicellular halotolerant cyanobacterium Aphanothece halophytica is known as a potential hydrogen (H2) producer. This study aimed to investigate the enhancement of H2 production under nutrient deprivation. The results showed that nitrogen and potassium deprivation induced dark fermentative H2 production by A. halophytica, while no differences in H2 production were found under sulfur and phosphorus deprivation. In addition, deprivation of nitrogen and potassium resulted in the highest H2 production in A. halophytica due to the stimulation of hydrogenase activity. The effect of adaptation time under nitrogen and potassium deprivation on H2 production was investigated. The results showed that the highest H2 accumulation of 1,261.96 ± 96.99 µmol H2 g dry wt-1 and maximum hydrogenase activity of 179.39 ± 8.18 µmol H2 g dry wt-1 min-1 were obtained from A. halophytica cells adapted in the nitrogen- and potassium-deprived BG11 medium supplemented with Turk Island salt solution (BG110-K) for 48 h. An increase in hydrogenase activity was attributed to the decreased O2 concentration in the system, due to a reduction of photosynthetic O2 evolution rate and a promotion of dark respiration rate. Moreover, nitrogen and potassium deprivation stimulated glycogen accumulation and decreased specific activity of pyruvate kinase. Transcriptional analysis of genes involved in H2 metabolism using RNA-seq confirmed the above results. Several genes involved in glycogen biosynthesis (glgA, glgB, and glgP) were upregulated under both nitrogen and potassium deprivation, but genes regulating enzymes in the glycolytic pathway were downregulated, especially pyk encoding pyruvate kinase. Interestingly, genes involved in the oxidative pentose phosphate pathway (OPP) were upregulated. Thus, OPP became the favored pathway for glycogen catabolism and the generation of reduced nicotinamide adenine dinucleotide phosphate (NADPH), which resulted in an increase in H2 production under dark anaerobic condition in both nitrogen- and potassium-deprived cells.
Collapse
Affiliation(s)
- Nattanon Chinchusak
- Department of Biology, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Aran Incharoensakdi
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand,Academy of Science, Royal Society of Thailand, Bangkok, Thailand
| | - Saranya Phunpruch
- Department of Biology, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand,Bioenergy Research Unit, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand,*Correspondence: Saranya Phunpruch,
| |
Collapse
|