1
|
Wang Y, Guo Y, Wang P, Liu J, Zhang X, Liu Q, Wei L, Xu C, Qin J. An engineered human placental organoid microphysiological system in a vascular niche to model viral infection. Commun Biol 2025; 8:669. [PMID: 40287582 PMCID: PMC12033323 DOI: 10.1038/s42003-025-08057-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
The placenta forms the maternal-fetal interface to protect the developing fetus from xenobiotics or pathogens. However, the understanding of complex placental features and responses to pathogens are hindered due to the lack of near-physiological models. Here, we present an engineered human placental organoid microphysiological system (MPS) incorporated with vascular endothelium, which allows to recapitulate early placental features in a vascular niche. The MPS comprises a customized insert-based organ chip and a rocker, enabling in situ differentiation and formation of placental organoids from human trophoblast stem cells under dynamic culture conditions. By incorporating vascular endothelium, trophoblast organoids (TOs) maintain improved cell viability, long-term trophoblast proliferation and differentiation. Moreover, trophoblast organoids cocultured with endothelium (EndTOs) show the activation of innate immune-related signaling pathways and high-level secretion of distinct immunomodulatory factors, including antiviral type I and III interferons and trophoblast-specific factors. We further demonstrate that EndTOs exhibit attenuated susceptibility to Zika virus (ZIKV) than single cultured TOs, indicating the crucial role of vascular niche in enhancing intrinsic antiviral defenses functions of trophoblasts. This bioinspired placental organoid MPS provides a useful platform for studying placental physiology and relevant diseases.
Collapse
Affiliation(s)
- Yaqing Wang
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China
| | - Yaqiong Guo
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Peng Wang
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China
| | - Jiayue Liu
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China
| | - Xu Zhang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Qian Liu
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China
| | - Lin Wei
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Cong Xu
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jianhua Qin
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China.
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
- Beijing Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Deng ZM, Dai FF, Wang RQ, Deng HB, Yin TL, Cheng YX, Chen GT. Organ-on-a-chip: future of female reproductive pathophysiological models. J Nanobiotechnology 2024; 22:455. [PMID: 39085921 PMCID: PMC11290169 DOI: 10.1186/s12951-024-02651-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 06/18/2024] [Indexed: 08/02/2024] Open
Abstract
The female reproductive system comprises the internal and external genitalia, which communicate through intricate endocrine pathways. Besides secreting hormones that maintain the female secondary sexual characteristics, it also produces follicles and offspring. However, the in vitro systems have been very limited in recapitulating the specific anatomy and pathophysiology of women. Organ-on-a-chip technology, based on microfluidics, can better simulate the cellular microenvironment in vivo, opening a new field for the basic and clinical research of female reproductive system diseases. This technology can not only reconstruct the organ structure but also emulate the organ function as much as possible. The precisely controlled fluidic microenvironment provided by microfluidics vividly mimics the complex endocrine hormone crosstalk among various organs of the female reproductive system, making it a powerful preclinical tool and the future of pathophysiological models of the female reproductive system. Here, we review the research on the application of organ-on-a-chip platforms in the female reproductive systems, focusing on the latest progress in developing models that reproduce the physiological functions or disease features of female reproductive organs and tissues, and highlighting the challenges and future directions in this field.
Collapse
Affiliation(s)
- Zhi-Min Deng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Fang-Fang Dai
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Rui-Qi Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Hong-Bing Deng
- Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Science, Wuhan University, Wuhan, Hubei, 430060, China
| | - Tai-Lang Yin
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China.
| | - Yan-Xiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China.
| | - Gan-Tao Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China.
| |
Collapse
|
3
|
Castillo C, Díaz-Luján C, Liempi A, Fretes R, Kemmerling U. Mammalian placental explants: A tool for studying host-parasite interactions and placental biology. Placenta 2024:S0143-4004(24)00291-1. [PMID: 38910051 DOI: 10.1016/j.placenta.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
The placenta plays a critical role in host-pathogen interactions. Thus, ex vivo infection of mammalian placental explants is an excellent and simple method to study the mechanisms of cellular and tissue invasion by different pathogens in different mammalian species. These explants can be maintained in culture for several days, preserving the tissue architecture and resembling in-utero conditions under more physiological conditions than their isolated counterparts in isolated cell culture models. In addition, placental explants not only allow us to study how the placenta responds and defends itself against various infections but also provide a versatile platform for advancing our understanding of placental biology and the immune response. Furthermore, they serve as powerful tools for drug discovery, facilitating the screening of potential therapeutics for placental infections and for the identification of diagnostic markers. This review highlights the utility of mammalian placental explants in studying the host-pathogen interaction of two relevant protozoan parasites, Trypanosoma cruzi, the causative agent of Chagas disease, and Toxoplasma gondii, the etiological agent of Toxoplasmosis. Here, we discuss the different methodologies and technical aspects of the model, as well as the effect of both parasites on placental responses in human, canine, and ovine explants.
Collapse
Affiliation(s)
- Christian Castillo
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | - Cintia Díaz-Luján
- Institute and Cathedra of Cell Biology, Histology and Embryology, Health Science Faculty, INICSA (CONICET)-Universidad Nacional de Córdoba and Villa María, Córdoba, Argentina
| | - Ana Liempi
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ricardo Fretes
- Institute and Cathedra of Cell Biology, Histology and Embryology, Health Science Faculty, INICSA (CONICET)-Universidad Nacional de Córdoba and Villa María, Córdoba, Argentina
| | - Ulrike Kemmerling
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
4
|
Wang H, Ning X, Zhao F, Zhao H, Li D. Human organoids-on-chips for biomedical research and applications. Theranostics 2024; 14:788-818. [PMID: 38169573 PMCID: PMC10758054 DOI: 10.7150/thno.90492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/09/2023] [Indexed: 01/05/2024] Open
Abstract
Human organoids-on-chips (OrgOCs) are the synergism of human organoids (HOs) technology and microfluidic organs-on-chips (OOCs). OOCs can mimic extrinsic characteristics of organs, such as environmental clues of living tissue, while HOs are more amenable to biological analysis and genetic manipulation. By spatial cooperation, OrgOCs served as 3D organotypic living models allowing them to recapitulate critical tissue-specific properties and forecast human responses and outcomes. It represents a giant leap forward from the regular 2D cell monolayers and animal models in the improved human ecological niche modeling. In recent years, OrgOCs have offered potential promises for clinical studies and advanced the preclinical-to-clinical translation in medical and industrial fields. In this review, we highlight the cutting-edge achievements in OrgOCs, introduce the key features of OrgOCs architectures, and share the revolutionary applications in basic biology, disease modeling, preclinical assay and precision medicine. Furthermore, we discuss how to combine a wide range of disciplines with OrgOCs and accelerate translational applications, as well as the challenges and opportunities of OrgOCs in biomedical research and applications.
Collapse
Affiliation(s)
- Hui Wang
- Department of Interventional & Vascular Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiufan Ning
- Department of Interventional & Vascular Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Feng Zhao
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Hui Zhao
- Department of Interventional & Vascular Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Dong Li
- Department of Interventional & Vascular Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| |
Collapse
|
5
|
Li X, Li ZH, Wang YX, Liu TH. A comprehensive review of human trophoblast fusion models: recent developments and challenges. Cell Death Discov 2023; 9:372. [PMID: 37816723 PMCID: PMC10564767 DOI: 10.1038/s41420-023-01670-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/23/2023] [Accepted: 09/29/2023] [Indexed: 10/12/2023] Open
Abstract
As an essential component of the maternal-fetal interface, the placental syncytiotrophoblast layer contributes to a successful pregnancy by secreting hormones necessary for pregnancy, transporting nutrients, mediating gas exchange, balancing immune tolerance, and resisting pathogen infection. Notably, the deficiency in mononuclear trophoblast cells fusing into multinucleated syncytiotrophoblast has been linked to adverse pregnancy outcomes, such as preeclampsia, fetal growth restriction, preterm birth, and stillbirth. Despite the availability of many models for the study of trophoblast fusion, there exists a notable disparity from the ideal model, limiting the deeper exploration into the placental development. Here, we reviewed the existing models employed for the investigation of human trophoblast fusion from several aspects, including the development history, latest progress, advantages, disadvantages, scope of application, and challenges. The literature searched covers the monolayer cell lines, primary human trophoblast, placental explants, human trophoblast stem cells, human pluripotent stem cells, three-dimensional cell spheres, organoids, and placenta-on-a-chip from 1938 to 2023. These diverse models have significantly enhanced our comprehension of placental development regulation and the underlying mechanisms of placental-related disorders. Through this review, our objective is to provide readers with a thorough understanding of the existing trophoblast fusion models, making it easier to select most suitable models to address specific experimental requirements or scientific inquiries. Establishment and application of the existing human placental trophoblast fusion models.
Collapse
Affiliation(s)
- Xia Li
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, 400016, Chongqing, China
- The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, 400016, Chongqing, China
| | - Zhuo-Hang Li
- The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, 400016, Chongqing, China
- Medical Laboratory Department, Traditional Chinese Medicine Hospital of Yaan, 625099, Sichuan, China
| | - Ying-Xiong Wang
- The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, 400016, Chongqing, China.
| | - Tai-Hang Liu
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, 400016, Chongqing, China.
- The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, 400016, Chongqing, China.
| |
Collapse
|
6
|
Park JY, Lim H, Qin J, Lee LP. Creating mini-pregnancy models in vitro with clinical perspectives. EBioMedicine 2023; 95:104780. [PMID: 37657136 PMCID: PMC10480532 DOI: 10.1016/j.ebiom.2023.104780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/03/2023] Open
Abstract
During the last decade, organs-on-chips or organoids microphysiological analysis platforms (MAP) have garnered attention in the practical applications of disease models, drug discovery, and developmental biology. Research on pregnant women has firm limitations due to ethical issues; thus, remodelling human pregnancy in vitro is highly beneficial for treatment modality development via disease remodelling or drug monitoring. This review highlights current efforts in bioengineering devices to reproduce human pregnancy and emphasises the significant convergence of biology, engineering, and maternal-foetal medicine. First, we review recent achievements in culturing cells from tissues involved in pregnancy; specifically, trophoblasts from the placenta. Second, we highlight developments in the reconstitution of pregnancy-related female reproductive organs across several structural and functional interpretations. Last, we examine research on the fundamental comprehension of pregnancy-associated diseases to find bioengineering solutions. Recreating human pregnancy through an engineered model is naturally complex; nevertheless, challenges are inevitable to progress precision medicine.
Collapse
Affiliation(s)
- Jee Yoon Park
- Department of Obstetrics and Gynecology, Seoul National University, Bundang Hospital, Seoul National University College of Medicine, Republic of Korea; Department of Medicine, Harvard Medical School, Brigham Women's Hospital, Boston, MA, USA.
| | - Hosub Lim
- Department of Medicine, Harvard Medical School, Brigham Women's Hospital, Boston, MA, USA
| | - Jianhua Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Luke P Lee
- Department of Medicine, Harvard Medical School, Brigham Women's Hospital, Boston, MA, USA; Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, CA, USA; Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Korea.
| |
Collapse
|