1
|
Wegener F, Alves A, Bussmeyer U, Soucy NV. 2023 International Academy of Toxicologic Pathology (IATP) Satellite Symposium: "Medical Device Safety Assessment: Pathology and Toxicology Perspective". Toxicol Pathol 2025:1926233251316283. [PMID: 39936568 DOI: 10.1177/01926233251316283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Medical devices represent a complex category of medicinal products with varying definitions depending on the regional jurisdiction of regulatory agencies. A common aspect of these definitions is that a medical device is intended to be used for specific medicinal purpose where the primary intended action of the device is not achieved through pharmacologic (or other chemical) means. While regional regulatory frameworks for medical devices are different than for pharmaceutical or biological products, medical device manufacturers are required to evaluate the safety and performance of these products in the context of their intended use. In biological safety evaluation, histopathology plays a relevant role in assessing medical device biocompatibility. This manuscript provides a broad overview of biocompatibility assessment with a deeper look at the role of the toxicologic pathologist in assessing innovative and emerging bone therapies. The content of this manuscript is based on individual presentations delivered at the 2023 International Academy of Toxicologic Pathology (IATP) Satellite Symposium held in conjunction with the Annual Congress of the European Society of Toxicologic Pathology (ESTP) on 26 September, in Basel, Switzerland.
Collapse
|
2
|
Pires DG, Silva NM, de Sousa BM, Marques JL, Ramos A, Ferreira JAF, Morais R, Vieira SI, Soares Dos Santos MP. A millimetre-scale capacitive biosensing and biophysical stimulation system for emerging bioelectronic bone implants. J R Soc Interface 2024; 21:20240279. [PMID: 39257282 PMCID: PMC11463222 DOI: 10.1098/rsif.2024.0279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/26/2024] [Accepted: 07/29/2024] [Indexed: 09/12/2024] Open
Abstract
Bioelectronic bone implants are being widely recognized as a promising technology for highly personalized bone/implant interface sensing and biophysical therapeutic stimulation. Such bioelectronic devices are based on an innovative concept with the ability to be applied to a wide range of implants, including in fixation and prosthetic systems. Recently, biointerface sensing using capacitive patterns was proposed to overcome the limitations of standard imaging technologies and other non-imaging technologies; moreover, electric stimulation using capacitive patterns was proposed to overcome the limitations of non-instrumented implants. We here provide an innovative low-power miniaturized electronic system with ability to provide both therapeutic stimulation and bone/implant interface monitoring using network-architectured capacitive interdigitated patterns. It comprises five modules: sensing, electric stimulation, processing, communication and power management. This technology was validated using in vitro tests: concerning the sensing system, its ability to detect biointerface changes ranging from tiny to severe bone-implant interface changes in target regions was validated; concerning the stimulation system, its ability to significantly enhance bone cells' full differentiation, including matrix maturation and mineralization, was also confirmed. This work provides an impactful contribution and paves the way for the development of the new generation of orthopaedic biodevices.
Collapse
Affiliation(s)
- Diogo G Pires
- Department of Mechanical Engineering, Centre for Mechanical Technology & Automation (TEMA), University of Aveiro , Aveiro 3810-193, Portugal
| | - Nuno M Silva
- Engineering Department, University of Trás-os-Montes e Alto Douro , Vila Real 5000-801, Portugal
| | - Bárbara M de Sousa
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro , Aveiro 3810-193, Portugal
| | - João L Marques
- Department of Physics, University of Aveiro , Aveiro 3810-193, Portugal
| | - António Ramos
- Department of Mechanical Engineering, Centre for Mechanical Technology & Automation (TEMA), University of Aveiro , Aveiro 3810-193, Portugal
- Intelligent Systems Associate Laboratory (LASI) , Guimarães 4800-058, Portugal
| | - Jorge A F Ferreira
- Department of Mechanical Engineering, Centre for Mechanical Technology & Automation (TEMA), University of Aveiro , Aveiro 3810-193, Portugal
- Intelligent Systems Associate Laboratory (LASI) , Guimarães 4800-058, Portugal
| | - Raul Morais
- Engineering Department, University of Trás-os-Montes e Alto Douro , Vila Real 5000-801, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro , Vila Real, 5000-801, Portugal
| | - Sandra I Vieira
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro , Aveiro 3810-193, Portugal
| | - Marco P Soares Dos Santos
- Department of Mechanical Engineering, Centre for Mechanical Technology & Automation (TEMA), University of Aveiro , Aveiro 3810-193, Portugal
- Intelligent Systems Associate Laboratory (LASI) , Guimarães 4800-058, Portugal
| |
Collapse
|
3
|
Rolo P, Vidal JV, Kholkin AL, Soares Dos Santos MP. Self-adaptive rotational electromagnetic energy generation as an alternative to triboelectric and piezoelectric transductions. COMMUNICATIONS ENGINEERING 2024; 3:105. [PMID: 39085411 PMCID: PMC11291956 DOI: 10.1038/s44172-024-00249-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 07/12/2024] [Indexed: 08/02/2024]
Abstract
Triboelectric and piezoelectric energy harvesters can hardly power most microelectronic systems. Rotational electromagnetic harvesters are very promising alternatives, but their performance is highly dependent on the varying mechanical sources. This study presents an innovative approach to significantly increase the performance of rotational harvesters, based on dynamic coil switching strategies for optimization of the coil connection architecture during energy generation. Both analytical and experimental validations of the concept of self-adaptive rotational harvester were carried out. The adaptive harvester was able to provide an average power increase of 63.3% and 79.5% when compared to a non-adaptive 16-coil harvester for harmonic translation and harmonic swaying excitations, respectively, and 83.5% and 87.2% when compared to a non-adaptive 8-coil harvester. The estimated energy conversion efficiency was also enhanced from ~80% to 90%. This study unravels an emerging technological approach to power a wide range of applications that cannot be powered by other vibrationally driven harvesters.
Collapse
Affiliation(s)
- Pedro Rolo
- Department of Mechanical Engineering and TEMA - Centre for Mechanical Technology & Automation, University of Aveiro, 3810-193, Aveiro, Portugal.
- Department of Physics and CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - João V Vidal
- Department of Physics and CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal.
- Department of Physics and I3N, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Andrei L Kholkin
- Department of Physics and CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Marco P Soares Dos Santos
- Department of Mechanical Engineering and TEMA - Centre for Mechanical Technology & Automation, University of Aveiro, 3810-193, Aveiro, Portugal.
- LASI - Intelligent Systems Associate Laboratory, 4800-058, Guimarães, Portugal.
| |
Collapse
|
4
|
Mercuri LG. Alloplastic temporomandibular joint replacement - past, present, and future: "Learn from the past, prepare for the future, live in the present." Thomas S. Monson. Br J Oral Maxillofac Surg 2024; 62:91-96. [PMID: 38000963 DOI: 10.1016/j.bjoms.2023.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/09/2023] [Accepted: 10/17/2023] [Indexed: 11/26/2023]
Abstract
Based on evidence from the orthopaedic, biomedical engineering, and oral and maxillofacial surgical literature, this paper discusses reported successes and failures of past alloplastic temporomandibular joint (TMJ) devices that have led to the development of present total temporomandibular joint replacement (TMJR) devices. The paper concludes with discussion of the ongoing research that will lead to future embodiment (materials, designs, and manufacture) advances in TMJR management of severe and debilitating end-stage TMJ disease, further improving patients' mandibular function, form, and overall quality of life.
Collapse
Affiliation(s)
- Louis G Mercuri
- Department of Orthopaedic Surgery, Rush University Medical Center, 1611 W Harrison St, Chicago, IL 60612, United States; Department of Biomedical Engineering, University of Illinois Chicago, 851 S Morgan St, Chicago, IL 60607, United States.
| |
Collapse
|
5
|
Jeyaraman M, Jayakumar T, Jeyaraman N, Nallakumarasamy A. Sensor Technology in Fracture Healing. Indian J Orthop 2023; 57:1196-1202. [PMID: 37525725 PMCID: PMC10386990 DOI: 10.1007/s43465-023-00933-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/08/2023] [Indexed: 08/02/2023]
Abstract
Introduction SMART sensor technology may provide the solution to bridge the gap between the current radiographic determination of fracture healing and clinical assessment. The displacement and rigidity between the fracture ends can be accurately measured using strain gauges. Progressively increasing stiffness is a sign of fracture consolidation which can be monitored using sensors. The design of standard orthopaedic implants can remain the same and needs no major modifications as the sensor can be mounted onto the implant without occupying much space. Data regarding various fracture morphologies and their strain levels throughout the fracture healing process may help develop AI algorithms that can subsequently be used to optimise implant design/materials. Materials and Methods The literature search was performed in PubMed, PubMed Central, Scopus, and Web of Science databases for reviewing and evaluating the published scientific data regarding sensor technology in fracture healing. Results and Interpretation SMART sensor technology comes with a variety of uses such as determining fracture healing progress, predicting early implant failure, and determining fractures liable for non-union to exemplify a few. The main limitations are that it is still in its inception and needs extensive refinement before it becomes widely and routinely used in clinical practice. Nevertheless, with continuous advances in microprocessor technology, research designs, and additive manufacturing, the utilisation and application of SMART implants in the field of trauma and orthopaedic surgery are constantly growing. Conclusion Mass production of such SMART implants will reduce overall production costs and see its use in routine clinical practice in the future and is likely to make a significant contribution in the next industrial revolution termed 'Industry 5.0' which aims at personalised patient-specific implants and devices. SMART sensor technology may, therefore, herald a new era in the field of orthopaedic trauma.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, Tamil Nadu 600056 India
| | - Tarun Jayakumar
- Department of Orthopaedics, KIMS-Sunshine Hospital, Hyderabad, Telangana 500003 India
| | - Naveen Jeyaraman
- Department of Orthopaedics, Shri Sathya Sai Medical College and Research Institute, Sri Balaji Vidyapeeth, Chengalpattu, Tamil Nadu 603108 India
| | - Arulkumar Nallakumarasamy
- Department of Orthopaedics, All India Institute of Medical Sciences, Bhubaneswar, Odisha 751019 India
| |
Collapse
|
6
|
Conceição C, Completo A, Soares dos Santos MP. Ultrasensitive capacitive sensing system for smart medical devices with ability to monitor fracture healing stages. J R Soc Interface 2023; 20:20220818. [PMCID: PMC9943881 DOI: 10.1098/rsif.2022.0818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Bone fractures are a global public health problem. A sustained increase in the number of incident cases has been observed in the last few decades, as well as the number of prevalent cases and the number of years lived with disability. Current monitoring techniques are based on imaging techniques, which are highly subjective, radioactive, expensive and unable to provide daily monitoring of fracture healing stages. The development of reliable, non-invasive and non-subjective technologies is mandatory to minimize non-union risks. Delayed healing and non-union conditions require timely medical intervention, such that preventive procedures and shortened treatment periods can be carried out. This work proposes the development of an ultrasensitive capacitive sensing system for smart implantable fixation implants with ability to effectively monitor the evolution of bone fractures. Both in vitro experimental tests and numerical simulations highlight that networks of co-surface capacitive systems are able: (i) to detect four different bone healing phases, capacitance decrease patterns occurring as the healing process progresses and (ii) to monitor the callus evolution in multiple target regions. These are very promising results that highlight the potential of capacitive technologies to minimize the individual and social burdens related to fracture management, mainly when delayed healing or non-union conditions occur.
Collapse
Affiliation(s)
- Cassandra Conceição
- Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - António Completo
- Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal,TEMA—Centre for Mechanical Technology and Automation, 3810-193 Aveiro, Portugal,LASI—Intelligent Systems Associate Laboratory, Portugal
| | - Marco P. Soares dos Santos
- Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal,TEMA—Centre for Mechanical Technology and Automation, 3810-193 Aveiro, Portugal,LASI—Intelligent Systems Associate Laboratory, Portugal
| |
Collapse
|
7
|
Soares Dos Santos MP, Bernardo RMC. Bioelectronic multifunctional bone implants: recent trends. Bioelectron Med 2022; 8:15. [PMID: 36127721 PMCID: PMC9490885 DOI: 10.1186/s42234-022-00097-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/23/2022] [Indexed: 12/04/2022] Open
Abstract
The concept of Instrumented Smart Implant emerged as a leading research topic that aims to revolutionize the field of orthopaedic implantology. These implants have been designed incorporating biophysical therapeutic actuation, bone-implant interface sensing, implant-clinician communication and self-powering ability. The ultimate goal is to implement revist interface, controlled by clinicians/surgeons without troubling the quotidian activities of patients. Developing such high-performance technologies is of utmost importance, as bone replacements are among the most performed surgeries worldwide and implant failure rates can still exceed 10%. In this review paper, an overview to the major breakthroughs carried out in the scope of multifunctional smart bone implants is provided. One can conclude that many challenges must be overcome to successfully develop them as revision-free implants, but their many strengths highlight a huge potential to effectively establish a new generation of high-sophisticated biodevices.
Collapse
Affiliation(s)
- Marco P Soares Dos Santos
- Department of Mechanical Engineering, Centre for Mechanical Technology & Automation (TEMA), Intelligent Systems Associate Laboratory (LASI), University of Aveiro, Aveiro, Portugal.
| | - Rodrigo M C Bernardo
- Department of Mechanical Engineering, Centre for Mechanical Technology & Automation (TEMA), Intelligent Systems Associate Laboratory (LASI), University of Aveiro, Aveiro, Portugal
| |
Collapse
|