1
|
Xu Y, Lu D, Zhang L, Zhang S, Wu Y, Li H, Pei B, Wu X. A Novel Dynamic Growth Rod Inducing Spinal Growth Modulation for the Correction of Spinal Deformities. JOR Spine 2025; 8:e70031. [PMID: 39801572 PMCID: PMC11720242 DOI: 10.1002/jsp2.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/19/2024] [Accepted: 12/03/2024] [Indexed: 01/16/2025] Open
Abstract
Background Growth rods are the gold standard for treating early-onset scoliosis (EOS). However, current treatments with growth rods do not optimize spinal growth in EOS patients, and frequent distraction surgeries significantly increase complications, imposing considerable economic and psychological burdens on patients. An improved growth rod is urgently required to address the need for dynamic growth and external regulation. Methods This study designed a novel growth rod (NGR) with unidirectional sliding and external regulation capabilities. By establishing a three-dimensional model of the EOS spine, we simulated the implantation of traditional growth rods (TGR) and NGR. We applied a compressive load of 400 N to test axial stiffness and a moment of 1 NM to assess bending stiffness under six different conditions. Additionally, we evaluated the range of motion (ROM) of the spinal joints, and the distribution of Von Mises stress in vertebrae, intervertebral discs, and the growth rods, and calculated the axial force, moment, fatigue life, and strain energy of the device. Results NGR exhibits higher axial compression and torsional stiffness than TGR and the Intact group. Additionally, Von Mises stress values for NGR are higher than those for TGR across all operating conditions, albeit with slightly lower total strain energy than TGR. Although Von Mises stress in NGR concentrates near the screw fixation, the fatigue life remains adequate for basic living requirements. Conclusion Overall, NGR demonstrates superior stiffness and stress distribution. NGR's distraction-based implant features a unidirectional sliding component with a spring-driven mechanism for dynamic correction and a novel non-invasive extension mechanism to reduce infections. Compared to leading EOS implants, NGR offers improved stability, showing promise for enhancing EOS surgical interventions.
Collapse
Affiliation(s)
- Yangyang Xu
- Beijing Key Laboratory for Design and Evaluation Technology of Advanced Implantable & Interventional Medical Devices, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijingChina
| | - Da Lu
- Beijing Key Laboratory for Design and Evaluation Technology of Advanced Implantable & Interventional Medical Devices, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijingChina
| | - Le Zhang
- Beijing Key Laboratory for Design and Evaluation Technology of Advanced Implantable & Interventional Medical Devices, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijingChina
| | - Shijia Zhang
- Beijing Key Laboratory for Design and Evaluation Technology of Advanced Implantable & Interventional Medical Devices, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijingChina
| | - Yong Wu
- Foot and Ankle Surgery Department, Beijing Jishuitan HospitalCapital Medical UniversityBeijingChina
| | - Heng Li
- Foot and Ankle Surgery Department, Beijing Jishuitan HospitalCapital Medical UniversityBeijingChina
| | - Baoqing Pei
- Beijing Key Laboratory for Design and Evaluation Technology of Advanced Implantable & Interventional Medical Devices, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijingChina
| | - Xueqing Wu
- Beijing Key Laboratory for Design and Evaluation Technology of Advanced Implantable & Interventional Medical Devices, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijingChina
| |
Collapse
|
2
|
Chen H, Wu T, Pan S, Zhang L, Zhao Y, Chen X, Sun Y, Lu WW, Zhou F. Finite element analysis of a new preoperative traction for cervical kyphosis: suspensory traction. Med Biol Eng Comput 2024; 62:2867-2877. [PMID: 38709337 PMCID: PMC11330378 DOI: 10.1007/s11517-024-03113-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/26/2024] [Indexed: 05/07/2024]
Abstract
A finite element model of cervical kyphosis was established to analyze the stress of cervical spine under suspensory traction and to explore the mechanism and effect of it. A patient with typical cervical kyphosis (C2-C5) underwent CT scan imaging, and 3D slicer was used to reconstruct the C2 to T2 vertebral bodies. The reconstructed data was imported into Hypermesh 2020 and Abaqus 2017 for meshing and finite element analysis. The changes of the kyphotic angle and the von Mises stress on the annulus fibrosus of each intervertebral disc and ligaments were analyzed under suspensory traction conditions. With the increase of suspensory traction weight, the overall kyphosis of cervical spine showed a decreasing trend. The correction of kyphosis was mainly contributed by the change of kyphotic segments. The kyphotic angle of C2-C5 was corrected from 45° to 13° finally. In cervical intervertebral discs, the stress was concentrated to anterior and posterior part, except for C4-5. The stress of the anterior longitudinal ligament (ALL) decreased from the rostral to the caudal, and the high level von Mises stress of the kyphotic segments appeared at C2-C3, C3-C4, and C4-C5. The roles of the other ligaments were not obvious. The kyphotic angle was significantly reduced by the suspensory traction. Shear effect due to the high von Mises stress in the anterior and posterior parts of annulus fibrosus and the tension on the anterior longitudinal ligament play a role in the correction of cervical kyphosis.
Collapse
Affiliation(s)
- Hongyu Chen
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Tianchi Wu
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, China
| | - Shengfa Pan
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Li Zhang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Yanbin Zhao
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Xin Chen
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Yu Sun
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - William W Lu
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China.
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, China.
| | - Feifei Zhou
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China.
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China.
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China.
| |
Collapse
|
3
|
Jayaswal D, Kodigudla M, Kelkar A, Goel V, Palepu V. Validation of a patient-specific finite element analysis framework for identification of growing rod-failure regions in early onset scoliosis patients. Spine Deform 2024; 12:941-952. [PMID: 38536653 PMCID: PMC11217039 DOI: 10.1007/s43390-024-00846-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/14/2024] [Indexed: 07/03/2024]
Abstract
PURPOSE Growing rods are the gold-standard for treatment of early onset scoliosis (EOS). However, these implanted rods experience frequent fractures, requiring additional surgery. A recent study by the U.S. Food and Drug Administration (FDA) identified four common rod fracture locations. Leveraging this data, Agarwal et al. were able to correlate these fractures to high-stress regions using a novel finite element analysis (FEA) framework for one patient. The current study aims to further validate this framework through FEA modeling extended to multiple patients. METHODS Three patient-specific FEA models were developed to match the pre-operative patient data taken from both registry and biplanar radiographs. The surgical procedure was then simulated to match the post-operative deformity. Body weight and flexion bending (1 Nm) loads were then applied and the output stress data on the rods were analyzed. RESULTS Radiographic data showed fracture locations at the mid-construct, adjacent to the distal and tandem connector across the patients. Stress analysis from the FEA showed these failure locations matched local high-stress regions for all fractures observed. These results qualitatively validate the efficacy of the FEA framework by showing a decent correlation between localized high-stress regions and the actual fracture sites in the patients. CONCLUSIONS This patient-specific, in-silico framework has huge potential to be used as a surgical tool to predict sites prone to fracture in growing rod implants. This prospective information would therefore be vital for surgical planning, besides helping optimize implant design for reducing rod failures.
Collapse
Affiliation(s)
- Daksh Jayaswal
- Department of Bioengineering and Orthopaedic Surgery, Engineering Center for Orthopaedic Research Excellence (E-CORE), University of Toledo, 2801 West Bancroft Street, Toledo, OH, 43606, USA
| | - Manoj Kodigudla
- Department of Bioengineering and Orthopaedic Surgery, Engineering Center for Orthopaedic Research Excellence (E-CORE), University of Toledo, 2801 West Bancroft Street, Toledo, OH, 43606, USA
| | - Amey Kelkar
- Department of Bioengineering and Orthopaedic Surgery, Engineering Center for Orthopaedic Research Excellence (E-CORE), University of Toledo, 2801 West Bancroft Street, Toledo, OH, 43606, USA
| | - Vijay Goel
- Department of Bioengineering and Orthopaedic Surgery, Engineering Center for Orthopaedic Research Excellence (E-CORE), University of Toledo, 2801 West Bancroft Street, Toledo, OH, 43606, USA
| | - Vivek Palepu
- Division of Applied Mechanics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Building WO 62-2225, Silver Spring, MD, 20993, USA.
| |
Collapse
|
4
|
Huang S, Wu X, Zhou C, Zhang X, Tang Z, Qi X, Zhao S. Static study and numerical simulation of the influence of cement distribution in the upper and lower adjacent vertebrae on sandwich vertebrae in osteoporotic patients: Finite element analysis. JOR Spine 2024; 7:e1343. [PMID: 38911099 PMCID: PMC11191753 DOI: 10.1002/jsp2.1343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 04/13/2024] [Accepted: 05/22/2024] [Indexed: 06/25/2024] Open
Abstract
Objective We analyzed the influence of the location of the upper and lower cement on the sandwich vertebrae (SV) by computer finite element analysis. Materials and Methods A finite element model of the spinal segment of T11-L1 was constructed and 6 mL of cement was built into T11 and L1 simultaneously. According to the various distributions of bone cement at T11 and L1, the following four groups were formed: (i) Group B-B: bilateral bone cement reinforcement in both T11 and L1 vertebral bodies; (ii) Group L-B: left unilateral reinforcement in T11 and bilateral reinforcement in L1; (iii) Group L-R: unilateral cement reinforcement in both T11 and L1 (cross); (iv) Group L-L: unilateral cement reinforcement in both T11 and L1 (ipsilateral side). The maximum von Mises stress (VMS) and maximum displacement of the SV and intervertebral discs were compared and analyzed. Results The maximum VMS of T12 was in the order of size: group B-B < L-B < L-R < L-L. Group B-B showed the lowest maximum VMS values for T12: 19.13, 18.86, 25.17, 25.01, 19.24, and 20.08 MPa in six directions of load flexion, extension, left and right lateral bending, and left and right rotation, respectively, while group L-L was the largest VMS in each group, with the maximum VMS in six directions of 21.55, 21.54, 30.17, 28.33, 19.88, and 25.27 MPa, respectively. Conclusion Compared with the uneven distribution of bone cement in the upper and lower adjacent vertebrae (ULAV), the uniform distribution of bone cement in the ULAV reduced and uniformed the stress load on the SV and intervertebral disc. Theoretically, it can lead to the lowest incidence of sandwich vertebral fracture and the slowest rate of intervertebral disc degeneration.
Collapse
Affiliation(s)
- Shaolong Huang
- Department of Orthopedics The Affiliated Hospital of Xuzhou Medical University Xuzhou Jiangsu China
- Graduate school of Xuzhou Medical University Xuzhou Jiangsu China
- Department of Orthopedics The Second Affiliated Hospital of Xuzhou Medical University Xuzhou Jiangsu China
| | - Xue Wu
- Graduate School of Wenzhou Medical University Wenzhou Zhejiang China
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, Zhejiang China
| | - Chengqiang Zhou
- Department of Orthopedics The Affiliated Hospital of Xuzhou Medical University Xuzhou Jiangsu China
- Graduate school of Xuzhou Medical University Xuzhou Jiangsu China
- Department of Orthopedics The Second Affiliated Hospital of Xuzhou Medical University Xuzhou Jiangsu China
| | - Xu Zhang
- Graduate school of Xuzhou Medical University Xuzhou Jiangsu China
- Department of Orthopedics The Second Affiliated Hospital of Xuzhou Medical University Xuzhou Jiangsu China
| | - Zhongjian Tang
- Graduate school of Xuzhou Medical University Xuzhou Jiangsu China
- Department of Orthopedics The Second Affiliated Hospital of Xuzhou Medical University Xuzhou Jiangsu China
| | - Xiangyu Qi
- Graduate school of Xuzhou Medical University Xuzhou Jiangsu China
- Department of Orthopedics The Second Affiliated Hospital of Xuzhou Medical University Xuzhou Jiangsu China
| | - Shuai Zhao
- Department of Orthopedics The Affiliated Hospital of Xuzhou Medical University Xuzhou Jiangsu China
| |
Collapse
|
5
|
Huang S, Zhou C, Zhang X, Tang Z, Liu L, Meng X, Xue C, Tang X. Biomechanical analysis of sandwich vertebrae in osteoporotic patients: finite element analysis. Front Endocrinol (Lausanne) 2023; 14:1259095. [PMID: 37900139 PMCID: PMC10600377 DOI: 10.3389/fendo.2023.1259095] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/21/2023] [Indexed: 10/31/2023] Open
Abstract
Objective The aim of this study was to investigate the biomechanical stress of sandwich vertebrae (SVs) and common adjacent vertebrae in different degrees of spinal mobility in daily life. Materials and methods A finite element model of the spinal segment of T10-L2 was developed and validated. Simultaneously, T11 and L1 fractures were simulated, and a 6-ml bone cement was constructed in their center. Under the condition of applying a 500-N axial load to the upper surface of T10 and immobilizing the lower surface of L2, moments were applied to the upper surface of T10, T11, T12, L1, and L2 and divided into five groups: M-T10, M-T11, M-T12, M-L1, and M-L2. The maximum von Mises stress of T10, T12, and L2 in different groups was calculated and analyzed. Results The maximum von Mises stress of T10 in the M-T10 group was 30.68 MPa, 36.13 MPa, 34.27 MPa, 33.43 MPa, 26.86 MPa, and 27.70 MPa greater than the maximum stress value of T10 in the other groups in six directions of load flexion, extension, left and right lateral bending, and left and right rotation, respectively. The T12 stress value in the M-T12 group was 29.62 MPa, 32.63 MPa, 30.03 MPa, 31.25 MPa, 26.38 MPa, and 26.25 MPa greater than the T12 stress value in the other groups in six directions. The maximum stress of L2 in M-T12 in the M-L2 group was 25.48 MPa, 36.38 MPa, 31.99 MPa, 31.07 MPa, 30.36 MPa, and 32.07 MPa, which was greater than the stress value of L2 in the other groups. When the load is on which vertebral body, it is subjected to the greatest stress. Conclusion We found that SVs did not always experience the highest stress. The most stressed vertebrae vary with the degree of curvature of the spine. Patients should be encouraged to avoid the same spinal curvature posture for a long time in life and work or to wear a spinal brace for protection after surgery, which can avoid long-term overload on a specific spine and disrupt its blood supply, resulting in more severe loss of spinal quality and increasing the possibility of fractures.
Collapse
Affiliation(s)
- Shaolong Huang
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Graduate School of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chengqiang Zhou
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Graduate School of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xu Zhang
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Graduate School of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhongjian Tang
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Graduate School of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Liangyu Liu
- North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xiao Meng
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Graduate School of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Cheng Xue
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xianye Tang
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
6
|
The magnetic field strength and the force distance dependency of the magnetically controlled growing rods used for early onset scoliosis. Sci Rep 2023; 13:3045. [PMID: 36810891 PMCID: PMC9944223 DOI: 10.1038/s41598-023-30232-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/20/2023] [Indexed: 02/23/2023] Open
Abstract
Magnetically controlled growing rods (MCGR's) have revolutionized the treatment of early-onset scoliosis (EOS) because painless lengthenings can be done in the outpatient clinic without anesthesia. Untreated EOS leads to respiratory insufficiency and reduced life expectancy. However, MCGR's have inherent complications like non-functioning of the lengthening mechanism. We quantify an important failure mechanism and give advice on how to avoid this complication. The magnetic field strength was measured on new/explanted rods at different distances between the external remote controller and the MCGR and likewise in patients before/after distractions. The magnetic field strength of the internal actuator decayed fast with increasing distances and plateaued at 25-30 mm approximating zero. Two new and 12 explanted MCGRs was used for the lab measurements of the elicited force using a forcemeter. At a distance of 25 mm, the force was reduced to approximately 40% (ca. 100 N) compared to zero distance (ca. 250 N), most so for explanted rods. This is used to point out the importance of minimizing the implantation depth to ensure proper functionality of the rod lengthening in clinical use for EOS patients. A distance of 25 mm from skin to MCGR should be considered a relative contraindication to clinical use in EOS patients.
Collapse
|
7
|
Dai H, Liu Y, Han Q, Zhang A, Chen H, Qu Y, Wang J, Zhao J. Biomechanical comparison between unilateral and bilateral percutaneous vertebroplasty for osteoporotic vertebral compression fractures: A finite element analysis. Front Bioeng Biotechnol 2022; 10:978917. [PMID: 36159704 PMCID: PMC9495612 DOI: 10.3389/fbioe.2022.978917] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022] Open
Abstract
Background and objective: The osteoporotic vertebral compression fracture (OVCF) has an incidence of 7.8/1000 person-years at 55–65 years. At 75 years or older, the incidence increases to 19.6/1000 person-years in females and 5.2–9.3/1000 person-years in males. To solve this problem, percutaneous vertebroplasty (PVP) was developed in recent years and has been widely used in clinical practice to treat OVCF. Are the clinical effects of unilateral percutaneous vertebroplasty (UPVP) and bilateral percutaneous vertebroplasty (BPVP) the same? The purpose of this study was to compare biomechanical differences between UPVP and BPVP using finite element analysis. Materials and methods: The heterogeneous assignment finite element (FE) model of T11-L1 was constructed and validated. A compression fracture of the vertebral body was performed at T12. UPVP and BPVP were simulated by the difference in the distribution of bone cement in T12. Stress distributions and maximum von Mises stresses of vertebrae and intervertebral discs were compared. The rate of change of maximum displacement between UPVP and BPVP was evaluated. Results: There were no obvious high-stress concentration regions on the anterior and middle columns of the T12 vertebral body in BPVP. Compared with UPVP, the maximum stress on T11 in BPVP was lower under left/right lateral bending, and the maximum stress on L1 was lower under all loading conditions. For the T12-L1 intervertebral disc, the maximum stress of BPVP was less than that of UPVP. The maximum displacement of T12 after BPVP was less than that after UPVP under the six loading conditions. Conclusion: BPVP could balance the stress of the vertebral body, reduce the maximum stress of the intervertebral disc, and offer advantages in terms of stability compared with UPVP. In summary, BPVP could reduce the incidence of postoperative complications and provide promising clinical effects for patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Yang Qu
- *Correspondence: Yang Qu, ; Jincheng Wang,
| | | | | |
Collapse
|