1
|
Li T, Meng F, Fang Y, Luo Y, He Y, Dong Z, Tian B. Multienzymatic disintegration of DNA-scaffolded magnetic nanoparticle assembly for malarial mitochondrial DNA detection. Biosens Bioelectron 2024; 246:115910. [PMID: 38086308 DOI: 10.1016/j.bios.2023.115910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/20/2023] [Accepted: 12/02/2023] [Indexed: 12/30/2023]
Abstract
Early diagnosis of malaria can prevent the spread of disease and save lives, which, however, remains challenging in remote and less developed regions. Here we report a portable and low-cost optomagnetic biosensor for rapid amplification and detection of malarial mitochondrial DNA. Bioresponsive magnetic nanoparticle assemblies are constructed by using nucleic acid scaffolds containing endonucleolytic DNAzymes and their substrates, which can be activated by the presence of target DNA and self-disintegrated to release magnetic nanoparticles for optomagnetic quantification. Specifically, target molecules can induce padlock probe ligation and subsequent one-pot homogeneous cascade reactions consisting of nicking-enhanced rolling circle amplification, DNAzyme-assisted nucleic acid recycling, and strand-displacement-driven disintegration of the magnetic assembly. With an optimized magnetic actuation process for reaction acceleration, a detection limit of 1 fM can be achieved by the proposed biosensor with a total assay time of ca. 90 min and a dynamic detection range spanning 3 orders of magnitude. The robustness of the system was validated by testing target molecules spiked in 5% serum samples. Clinical sample validation was conducted by testing malaria-positive clinical blood specimens, obtaining quantitative results concordant with qPCR measurements.
Collapse
Affiliation(s)
- Tingting Li
- School of Basic Medical Sciences, Central South University, Changsha, 410013, China
| | - Fanming Meng
- School of Basic Medical Sciences, Central South University, Changsha, 410013, China; School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830017, China
| | - Yuan Fang
- School of Basic Medical Sciences, Central South University, Changsha, 410013, China; College of Biology, Hunan University, Changsha, 410082, China
| | - Yifei Luo
- School of Basic Medical Sciences, Central South University, Changsha, 410013, China
| | - Yilong He
- School of Basic Medical Sciences, Central South University, Changsha, 410013, China
| | - Zhuxin Dong
- School of Basic Medical Sciences, Central South University, Changsha, 410013, China; Furong Laboratory, Changsha, 410008, China
| | - Bo Tian
- School of Basic Medical Sciences, Central South University, Changsha, 410013, China; Furong Laboratory, Changsha, 410008, China.
| |
Collapse
|
2
|
Ding M, Xiao X, Yang Y, Yao Z, Dong Z, Gao Q, Tian B. AND-Logic Cascade Rolling Circle Amplification for Optomagnetic Detection of Dual Target SARS-CoV-2 Sequences. Anal Chem 2024; 96:455-462. [PMID: 38123506 DOI: 10.1021/acs.analchem.3c04533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
DNA logic operations are accurate and specific molecular strategies that are appreciated in target multiplexing and intelligent diagnostics. However, most of the reported DNA logic operation-based assays lack amplifiers prior to logic operation, resulting in detection limits at the subpicomolar to nanomolar level. Herein, a homogeneous and isothermal AND-logic cascade amplification strategy is demonstrated for optomagnetic biosensing of two different DNA inputs corresponding to a variant of concern sequence (containing spike L452R) and a highly conserved sequence from SARS-CoV-2. With an "amplifiers-before-operator" configuration, two input sequences are recognized by different padlock probes for amplification reactions, which generate amplicons used, respectively, as primers and templates for secondary amplification, achieving the AND-logic operation. Cascade amplification products can hybridize with detection probes grafted onto magnetic nanoparticles (MNPs), leading to hydrodynamic size increases and/or aggregation of MNPs. Real-time optomagnetic MNP analysis offers a detection limit of 8.6 fM with a dynamic detection range spanning more than 3 orders of magnitude. The accuracy, stability, and specificity of the system are validated by testing samples containing serum, salmon sperm, a single-nucleotide variant, and biases of the inputs. Clinical samples are tested with both quantitative reverse transcription-PCR and our approach, showing highly consistent measurement results.
Collapse
Affiliation(s)
- Mingming Ding
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Xiaozhou Xiao
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Yulin Yang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Ziyang Yao
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Zhuxin Dong
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha 410013, China
- Furong Laboratory, Changsha 410008, China
| | - Qian Gao
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Bo Tian
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha 410013, China
- Furong Laboratory, Changsha 410008, China
| |
Collapse
|
3
|
Fang Y, Yang Y, Yao Z, Lei X, Dong Z, Zhang M, Yao R, Tian B. On-Particle Hyperbranched Rolling Circle Amplification-Scaffolded Magnetic Nanoactuator Assembly for Ferromagnetic Resonance Detection of MicroRNA. ACS Sens 2023; 8:4792-4800. [PMID: 38073137 DOI: 10.1021/acssensors.3c01967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Inspired by natural molecular machines, scientists are devoted to designing nanomachines that can navigate in aqueous solutions, sense their microenvironment, actuate, and respond. Among different strategies, magnetically driven nanoactuators can easily be operated remotely in liquids and thus are valuable in biosensing. Here we report a magnetic nanoactuator swarm with rotating-magnetic-field-controlled conformational changes for reaction acceleration and target quantification. By grafting nucleic acid amplification primers, magnetic nanoparticle (MNP) actuators can assemble and be fixed with a flexible DNA scaffold generated by surface-localized hyperbranched rolling circle amplification in response to the presence of a target microRNA, osa-miR156. Net magnetic anisotropy changes of the system induced by the MNP assembly can be measured by ferromagnetic resonance spectroscopy as shifts in the resonance field. With a total assay time of ca. 120 min, the proposed biosensor offers a limit of detection of 6 fM with a dynamic detection range spanning 5 orders of magnitude. The specificity of the system is validated by testing different microRNAs and salmon sperm DNA. Endogenous microRNAs extracted from Oryza sativa leaves are tested with both quantitative reverse transcription-PCR and our approach, showing comparable performances with a Pearson correlation coefficient >0.9 (n = 20).
Collapse
Affiliation(s)
- Yuan Fang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Yulin Yang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Ziyang Yao
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Xi Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Zhuxin Dong
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha 410013, China
- Furong Laboratory, Changsha 410008, China
| | - Meng Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
- Shenzhen Research Institute, Hunan University, Shenzhen 518000, China
| | - Ruifeng Yao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
- Shenzhen Research Institute, Hunan University, Shenzhen 518000, China
| | - Bo Tian
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha 410013, China
- Furong Laboratory, Changsha 410008, China
| |
Collapse
|
4
|
Yu M, He T, Wang Q, Cui C. Unraveling the Possibilities: Recent Progress in DNA Biosensing. BIOSENSORS 2023; 13:889. [PMID: 37754122 PMCID: PMC10526863 DOI: 10.3390/bios13090889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/29/2023] [Accepted: 09/09/2023] [Indexed: 09/28/2023]
Abstract
Due to the advantages of its numerous modification sites, predictable structure, high thermal stability, and excellent biocompatibility, DNA is the ideal choice as a key component of biosensors. DNA biosensors offer significant advantages over existing bioanalytical techniques, addressing limitations in sensitivity, selectivity, and limit of detection. Consequently, they have attracted significant attention from researchers worldwide. Here, we exemplify four foundational categories of functional nucleic acids: aptamers, DNAzymes, i-motifs, and G-quadruplexes, from the perspective of the structure-driven functionality in constructing DNA biosensors. Furthermore, we provide a concise overview of the design and detection mechanisms employed in these DNA biosensors. Noteworthy advantages of DNA as a sensor component, including its programmable structure, reaction predictility, exceptional specificity, excellent sensitivity, and thermal stability, are highlighted. These characteristics contribute to the efficacy and reliability of DNA biosensors. Despite their great potential, challenges remain for the successful application of DNA biosensors, spanning storage and detection conditions, as well as associated costs. To overcome these limitations, we propose potential strategies that can be implemented to solve these issues. By offering these insights, we aim to inspire subsequent researchers in related fields.
Collapse
Affiliation(s)
| | | | | | - Cheng Cui
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China; (M.Y.)
| |
Collapse
|
5
|
Chen L, Fang Y, Zhou X, Zhang M, Yao R, Tian B. Magnetic DNA Nanomachine for On-Particle Cascade Amplification-Based Ferromagnetic Resonance Detection of Plant MicroRNA. Anal Chem 2023; 95:5411-5418. [PMID: 36917201 DOI: 10.1021/acs.analchem.3c00065] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Plant microRNAs play critical roles in post-transcriptional gene regulation of many processes, thus motivating the development of accurate and user-friendly microRNA detection methods for better understanding of, e.g., plant growth, development, and abiotic/biotic stress responses. By integrating the capture probe, fuel strand, primer, and template onto the surface of a magnetic nanoparticle (MNP), we demonstrated a magnetic DNA nanomachine that could conduct an on-particle cascade amplification reaction in response to the presence of target microRNA. The cascade amplification consists of an exonuclease III-assisted target recycling step and a rolling circle amplification step, leading to changes in the MNP arrangement that can be quantified by ferromagnetic resonance spectroscopy. After a careful investigation of the exonuclease III side reaction, the biosensor offers a detection limit of 15 fM with a total assay time of ca. 70 min. Moreover, our magnetic DNA nanomachine is capable of discriminating the target microRNA from its family members. Our biosensor has also been tested on total endogenous microRNAs extracted from Arabidopsis thaliana leaves, with a performance comparable to qRT-PCR.
Collapse
Affiliation(s)
- Li Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Yuan Fang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China.,Department of Biomedical Engineering, School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Xuemei Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Meng Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Ruifeng Yao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Bo Tian
- Department of Biomedical Engineering, School of Basic Medical Science, Central South University, Changsha 410013, China
| |
Collapse
|
6
|
Photoacoustic detection of SARS-CoV-2 spike N501Y single-nucleotide polymorphism based on branched rolling circle amplification. Talanta 2022. [PMCID: PMC9630300 DOI: 10.1016/j.talanta.2022.124047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Rapid and accurate diagnosis of SARS-CoV-2 single-nucleotide variations is an urgent need for the initial detection of local circulation and monitoring the alternation of dominant variant. In this proof-of-concept study, a homogeneous and isothermal photoacoustic biosensor is demonstrated for rapid molecular amplification and detection of a synthetic DNA corresponding to SARS-CoV-2 spike N501Y. Branched rolling circle amplification produces single-stranded amplicons that can aggregate detection probe-modified AuNPs, which induces a strong photoacoustic signal at 640 nm due to both the surface plasmon resonance shift and the size-dependent effect of laser-induced nanobubbles, achieving a sub-femtomolar detection limit within a total assay time of 80 min. The limit of detection can be kept when measuring 5% serum samples. Moreover, the proposed biosensor is highly specific for single-nucleotide polymorphism discrimination and robust against background DNA.
Collapse
|