1
|
Freire APE, Skubitz KM. Clinical Benefit of Pegylated Liposomal Doxorubicin and High Prevalence of Pre-Existing Psychiatric Conditions in Patients with Desmoid-Type Fibromatosis. Cancers (Basel) 2025; 17:293. [PMID: 39858074 PMCID: PMC11763362 DOI: 10.3390/cancers17020293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Desmoid-type fibromatosis (DTF) is a locally invasive tumor composed of myofibroblast-like cells and collagen; it does not metastasize but can cause significant local morbidity. Most sporadic cases are associated with mutations in the CTNNB1 gene, which encodes beta-catenin. Various treatments have been used with differing efficacy and toxicity profiles. At our institution, pegylated liposomal doxorubicin (PLD) has become the preferred treatment for patients with DTF. We aim to describe our experience using PLD in patients with DTF who require treatment. Methods: A retrospective review of 61 DTF patients (41 females, 20 males) treated between 2000 and 2023 was conducted to assess the efficacy and toxicity of PLD. Results: Of the 26 patients treated with PLD, 23 had follow-up clinical data to assess benefit. Twenty-one showed clinical benefit, and only one progressed. Two patients did not benefit from PLD due to infusion reactions and chose alternative therapies. The primary side effect of PLD was hand-foot syndrome (HFS), but dose reduction and extended intervals allowed most patients to tolerate treatment. Other treatments, such as methotrexate, vinblastine/vinorelbine, and sorafenib, also showed activity but had significant toxicities, including severe HFS, malaise, and hypertension. Interestingly, 31 out of 61 patients had a pre-existing history of psychiatric conditions (primarily depression and anxiety), and 6 of 41 women had personal or family history of polycystic ovary syndrome (PCOS). Additionally, 15 patients had obesity, and 4 had hypothyroidism. Conclusions: PLD is an effective and well-tolerated treatment for DTF, with good clinical responses at lower, tolerable doses. The association of pre-existing psychiatric diagnoses, PCOS, and obesity warrants further investigation.
Collapse
Affiliation(s)
| | - Keith M. Skubitz
- Department of Medicine, The Masonic Cancer Center, The University of Minnesota Medical School, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
2
|
Gabellone S, Vanni S, Fausti V, Miserocchi G, Liverani C, Spadazzi C, Cocchi C, Calabrese C, Cavaliere D, Pacilio CA, Ercolani G, Pieri F, Gurrieri L, Riva N, Jones R, De Vita A. Exploring nanotechnology solutions for improved outcomes in gastrointestinal stromal tumors. Heliyon 2024; 10:e40596. [PMID: 39687122 PMCID: PMC11647801 DOI: 10.1016/j.heliyon.2024.e40596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Objectives Gastrointestinal stromal tumors, the most prevalent mesenchymal tumors (80 %) of the gastrointestinal tract, comprise less than 1 % of all gastrointestinal neoplasms and about 5 % of all sarcomas. Despite their rarity, Gastrointestinal stromal tumors present diverse clinical manifestations, anatomic locations, histological subtypes, and prognostic outcomes. Methods This scoping review comprehensively explores the epidemiology, clinical characteristics, diagnostic and prognostic modalities, as well as new therapeutic options for Gastrointestinal stromal tumors. Results A particular focus is placed on the promising role of bio-nanomaterials as multifunctional agents for drug delivery and 3D tumor microenvironment modeling. Bio-nanomaterials offer promising opportunities for targeted drug delivery, overcoming treatment resistance, and improving therapeutic efficacy. Conclusion Despite significant advancements, Gastrointestinal stromal tumors remain a complex clinical entity with ongoing challenges. The integration of nanotechnology into Gastrointestinal stromal tumors management offers the potential to enhance patient outcomes. Future studies should prioritize the development and evaluation of nanomaterial-based therapies in clinical trials to facilitate the translation of laboratory discoveries into real-world clinical applications.
Collapse
Affiliation(s)
- Sofia Gabellone
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014, Meldola, Italy
| | - Silvia Vanni
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014, Meldola, Italy
| | - Valentina Fausti
- Clinical and Experimental Oncology, Immunotherapy, Rare Cancers and Biological Resource Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014, Meldola, Italy
| | - Giacomo Miserocchi
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014, Meldola, Italy
| | - Chiara Liverani
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014, Meldola, Italy
| | - Chiara Spadazzi
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014, Meldola, Italy
| | - Claudia Cocchi
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014, Meldola, Italy
| | - Chiara Calabrese
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014, Meldola, Italy
| | - Davide Cavaliere
- General and Oncologic Surgery, “Morgagni-Pierantoni” Hospital, 47121, Forlì, Italy
| | | | - Giorgio Ercolani
- General and Oncologic Surgery, “Morgagni-Pierantoni” Hospital, 47121, Forlì, Italy
| | - Federica Pieri
- Pathology Unit, “Morgagni-Pierantoni” Hospital, 47121, Forlì, Italy
| | - Lorena Gurrieri
- Clinical and Experimental Oncology, Immunotherapy, Rare Cancers and Biological Resource Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014, Meldola, Italy
| | - Nada Riva
- Clinical and Experimental Oncology, Immunotherapy, Rare Cancers and Biological Resource Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014, Meldola, Italy
| | - Robin Jones
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust, SW3 6JJ, London, UK
| | - Alessandro De Vita
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014, Meldola, Italy
| |
Collapse
|
3
|
Cruz-Ramos M, Cabrera-Nieto SA, Murguia-Perez M, Fajardo-Espinoza FS. The Role of Adenosine in Overcoming Resistance in Sarcomas. Int J Mol Sci 2024; 25:12209. [PMID: 39596278 PMCID: PMC11594806 DOI: 10.3390/ijms252212209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Resistance to systemic therapies in sarcomas poses a significant challenge to improving clinical outcomes. Recent research has concentrated on the tumor microenvironment's role in sarcoma progression and treatment resistance. This microenvironment comprises a variety of cell types and signaling molecules that influence tumor behavior, including proliferation, metastasis, and resistance to therapy. Adenosine, abundant in the tumor microenvironment, has been implicated in promoting immunosuppression and chemoresistance. Targeting adenosine receptors and associated pathways offers a novel approach to enhancing immune responses against tumors, potentially improving immunotherapy outcomes in cancers, including sarcomas. Manipulating adenosine signaling also shows promise in overcoming chemotherapy resistance in these tumors. Clinical trials investigating adenosine receptor antagonists in sarcomas have fueled interest in this pathway for sarcoma treatment. Ultimately, a comprehensive understanding of the tumor and vascular microenvironments, as well as the adenosine pathway, may open new avenues for improving treatment outcomes and overcoming resistance in sarcoma. Further studies and clinical trials are crucial to validate these findings and optimize therapeutic strategies, particularly for osteosarcoma. This study provides a literature review exploring the potential role of the adenosine pathway in sarcomas.
Collapse
Affiliation(s)
- Marlid Cruz-Ramos
- Investigadora por México del Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Mexico City 03940, Mexico
- Facultad de Ciencias de la Salud, Universidad Anáhuac México, Huixquilucan 52786, Mexico; (S.A.C.-N.); (F.S.F.-E.)
| | - Sara Aileen Cabrera-Nieto
- Facultad de Ciencias de la Salud, Universidad Anáhuac México, Huixquilucan 52786, Mexico; (S.A.C.-N.); (F.S.F.-E.)
| | - Mario Murguia-Perez
- Laboratorio de Anatomía Patológica e Inmunohistoquímica Especializada DIME, Hospital Médica Campestre, León 37180, Mexico;
- Departamento de Patología Quirúrgica, UMAE Hospital de Especialidades No. 1, Centro Médico Nacional Bajío, Instituto Mexicano del Seguro Social, León 37328, Mexico
| | | |
Collapse
|
4
|
Smith KH, Trovillion EM, Sholler C, Gandra D, McKinney KQ, Mulama D, Dykema KJ, Nagulapally AB, Oesterheld J, Saulnier Sholler GL. Panobinostat Synergizes with Chemotherapeutic Agents and Improves Efficacy of Standard-of-Care Chemotherapy Combinations in Ewing Sarcoma Cells. Cancers (Basel) 2024; 16:3565. [PMID: 39518006 PMCID: PMC11545275 DOI: 10.3390/cancers16213565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Background: The survival rate of patients with Ewing sarcoma (EWS) has seen very little improvement over the past several decades and remains dismal for those with recurrent or metastatic disease. HDAC2, ALK, JAK1, and CDK4 were identified as potential targets using RNA sequencing performed on EWS patient tumors with the bioinformatic analysis of gene expression. Methods/Results: The pan-HDAC inhibitor Panobinostat was cytotoxic to all the Ewing sarcoma cell lines tested. Mechanistically, Panobinostat decreases the expression of proteins involved in the cell cycle, including Cyclin D1 and phospho-Rb, and DNA damage repair, including CHK1. Further, Panobinostat induces a G1 cell cycle arrest. The combination of Panobinostat with Doxorubicin or Etoposide, both of which are used as standard of care in upfront treatment, leads to a synergistic effect in EWS cells. The combination of Panobinostat and Doxorubicin induces an accumulation of DNA damage, a decrease in the expression of DNA damage repair proteins CHK1 and CHK2, and an increase in caspase 3 cleavage. The addition of Panobinostat to standard-of-care chemotherapy combinations significantly reduces cell viability compared to that of chemotherapy alone. Conclusions: Overall, our data indicate that HDAC2 is overexpressed in many EWS tumor samples and HDAC inhibition is effective in targeting EWS cells, alone and in combination with standard-of-care chemotherapy agents. This work suggests that the addition of an HDAC inhibitor to upfront treatment may improve response.
Collapse
Affiliation(s)
- Kaitlyn H. Smith
- Levine Cancer Institute, Atrium Health Carolinas Medical Center, Charlotte, NC 28204, USA
| | | | - Chloe Sholler
- Levine Cancer Institute, Atrium Health Carolinas Medical Center, Charlotte, NC 28204, USA
| | - Divya Gandra
- Levine Cancer Institute, Atrium Health Carolinas Medical Center, Charlotte, NC 28204, USA
| | - Kimberly Q. McKinney
- Levine Cancer Institute, Atrium Health Carolinas Medical Center, Charlotte, NC 28204, USA
| | - David Mulama
- Levine Cancer Institute, Atrium Health Carolinas Medical Center, Charlotte, NC 28204, USA
| | - Karl J. Dykema
- Levine Cancer Institute, Atrium Health Carolinas Medical Center, Charlotte, NC 28204, USA
| | - Abhinav B. Nagulapally
- Levine Cancer Institute, Atrium Health Carolinas Medical Center, Charlotte, NC 28204, USA
| | | | - Giselle L. Saulnier Sholler
- Levine Children’s Hospital, Charlotte, NC 28203, USA; (E.M.T.)
- Penn State Hershey Children’s Hospital, Hershey, PA 17033, USA
| |
Collapse
|
5
|
Paludetto LV, Monteiro NG, Breseghello I, de Souza Batista FR, Antoniali C, Lisboa-Filho PN, Okamoto R. Smart Delivery of Biomolecules Interfering with Peri-Implant Repair in Osteoporotic Rats. Int J Mol Sci 2024; 25:8963. [PMID: 39201648 PMCID: PMC11354528 DOI: 10.3390/ijms25168963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Bisphosphonates are widely used for the treatment of postmenopausal osteoporosis; however, they cause several long-term side effects, necessitating the investigation of local ways to improve osseointegration in compromised bone tissue. The purpose of this study was to evaluate peri-implant bone repair using implants functionalized with zoledronic acid alone (OVX ZOL group, n = 11), zoledronic acid + teriparatide (OVX ZOL + TERI group, n = 11), and zoledronic acid + ruterpy (OVX ZOL + TERPY group, n = 11) compared to the control group (OVX CONV, n = 11). Analyses included computer-assisted microtomography, qualitative histologic analysis, and real-time PCR analysis. Histologically, all functionalized surfaces improved peri-implant repair, with the OVX ZOL + TERI group standing out. Similar results were found in computerized microtomography analysis. In real-time PCR analysis, however, the OVX ZOL and OVX ZOL + TERPY groups showed better results for bone formation, with the OVX ZOL + TERPY group standing out, while there were no statistical differences between the OVX CONV and OVX ZOL + TERI groups for the genes studied at 28 postoperative days. Nevertheless, all functionalized groups showed a reduced rate of bone resorption. In short, all surface functionalization groups outperformed the control group, with overall better results for the OVX ZOL + TERI group.
Collapse
Affiliation(s)
- Laura Vidoto Paludetto
- Department of Basic Sciences, Araçatuba Dental School, São Paulo State University Júlio de Mesquita Filho-UNESP, Aracatuba 16015-050, SP, Brazil
| | - Naara Gabriela Monteiro
- Department of Basic Sciences, Araçatuba Dental School, São Paulo State University Júlio de Mesquita Filho-UNESP, Aracatuba 16015-050, SP, Brazil
| | - Isadora Breseghello
- Department of Basic Sciences, Araçatuba Dental School, São Paulo State University Júlio de Mesquita Filho-UNESP, Aracatuba 16015-050, SP, Brazil
| | - Fábio Roberto de Souza Batista
- Department of Basic Sciences, Araçatuba Dental School, São Paulo State University Júlio de Mesquita Filho-UNESP, Aracatuba 16015-050, SP, Brazil
| | - Cristina Antoniali
- Department of Basic Sciences, Araçatuba Dental School, São Paulo State University Júlio de Mesquita Filho-UNESP, Aracatuba 16015-050, SP, Brazil
| | - Paulo Noronha Lisboa-Filho
- Department of Physics and Meteorology, Bauru Sciences School, São Paulo State University Júlio de Mesquita Filho-UNESP, Bauru 17033-360, SP, Brazil
| | - Roberta Okamoto
- Department of Basic Sciences, Araçatuba Dental School, São Paulo State University Júlio de Mesquita Filho-UNESP, Aracatuba 16015-050, SP, Brazil
| |
Collapse
|
6
|
Mathes D, Macedo LB, Pieta TB, Maia BC, Rodrigues OED, Leal JG, Wendt M, Rolim CMB, Mitjans M, Nogueira-Librelotto DR. Co-Delivery of an Innovative Organoselenium Compound and Paclitaxel by pH-Responsive PCL Nanoparticles to Synergistically Overcome Multidrug Resistance in Cancer. Pharmaceutics 2024; 16:590. [PMID: 38794252 PMCID: PMC11124783 DOI: 10.3390/pharmaceutics16050590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
In this study, we designed the association of the organoselenium compound 5'-Seleno-(phenyl)-3'-(ferulic-amido)-thymidine (AFAT-Se), a promising innovative nucleoside analogue, with the antitumor drug paclitaxel, in poly(ε-caprolactone) (PCL)-based nanoparticles (NPs). The nanoprecipitation method was used, adding the lysine-based surfactant, 77KS, as a pH-responsive adjuvant. The physicochemical properties presented by the proposed NPs were consistent with expectations. The co-nanoencapsulation of the bioactive compounds maintained the antioxidant activity of the association and evidenced greater antiproliferative activity in the resistant/MDR tumor cell line NCI/ADR-RES, both in the monolayer/two-dimensional (2D) and in the spheroid/three-dimensional (3D) assays. Hemocompatibility studies indicated the safety of the nanoformulation, corroborating the ability to spare non-tumor 3T3 cells and human mononuclear cells of peripheral blood (PBMCs) from cytotoxic effects, indicating its selectivity for the cancerous cells. Furthermore, the synergistic antiproliferative effect was found for both the association of free compounds and the co-encapsulated formulation. These findings highlight the antitumor potential of combining these bioactives, and the proposed nanoformulation as a potentially safe and effective strategy to overcome multidrug resistance in cancer therapy.
Collapse
Affiliation(s)
- Daniela Mathes
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil; (D.M.); (L.B.M.); (B.C.M.); (C.M.B.R.)
- Laboratório de Testes e Ensaios Farmacêuticos In Vitro, Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil;
| | - Letícia Bueno Macedo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil; (D.M.); (L.B.M.); (B.C.M.); (C.M.B.R.)
- Laboratório de Engenharia e Processos Químicos, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil
| | - Taís Baldissera Pieta
- Laboratório de Testes e Ensaios Farmacêuticos In Vitro, Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil;
| | - Bianca Costa Maia
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil; (D.M.); (L.B.M.); (B.C.M.); (C.M.B.R.)
- Laboratório de Testes e Ensaios Farmacêuticos In Vitro, Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil;
| | - Oscar Endrigo Dorneles Rodrigues
- Departamento de Química, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil; (O.E.D.R.); (J.G.L.); (M.W.)
| | - Julliano Guerin Leal
- Departamento de Química, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil; (O.E.D.R.); (J.G.L.); (M.W.)
| | - Marcelo Wendt
- Departamento de Química, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil; (O.E.D.R.); (J.G.L.); (M.W.)
| | - Clarice Madalena Bueno Rolim
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil; (D.M.); (L.B.M.); (B.C.M.); (C.M.B.R.)
- Laboratório de Testes e Ensaios Farmacêuticos In Vitro, Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil;
| | - Montserrat Mitjans
- Departament de Bioquimica i Fisiologia, Facultat de Farmacia i Ciències de l’Alimentaciò, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Daniele Rubert Nogueira-Librelotto
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil; (D.M.); (L.B.M.); (B.C.M.); (C.M.B.R.)
- Laboratório de Testes e Ensaios Farmacêuticos In Vitro, Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil;
| |
Collapse
|
7
|
Bhushan B, Iranpour R, Eshtiaghi A, da Silva Rosa SC, Lindsey BW, Gordon JW, Ghavami S. Transforming Growth Factor Beta and Alveolar Rhabdomyosarcoma: A Challenge of Tumor Differentiation and Chemotherapy Response. Int J Mol Sci 2024; 25:2791. [PMID: 38474036 DOI: 10.3390/ijms25052791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Alveolar rhabdomyosarcoma (ARMS), an invasive subtype of rhabdomyosarcoma (RMS), is associated with chromosomal translocation events resulting in one of two oncogenic fusion genes, PAX3-FOXO1 or PAX7-FOXO1. ARMS patients exhibit an overexpression of the pleiotropic cytokine transforming growth factor beta (TGF-β). This overexpression of TGF-β1 causes an increased expression of a downstream transcription factor called SNAIL, which promotes epithelial to mesenchymal transition (EMT). Overexpression of TGF-β also inhibits myogenic differentiation, making ARMS patients highly resistant to chemotherapy. In this review, we first describe different types of RMS and then focus on ARMS and the impact of TGF-β in this tumor type. We next highlight current chemotherapy strategies, including a combination of the FDA-approved drugs vincristine, actinomycin D, and cyclophosphamide (VAC); cabozantinib; bortezomib; vinorelbine; AZD 1775; and cisplatin. Lastly, we discuss chemotherapy agents that target the differentiation of tumor cells in ARMS, which include all-trans retinoic acid (ATRA) and 5-Azacytidine. Improving our understanding of the role of signaling pathways, such as TGF-β1, in the development of ARMS tumor cells differentiation will help inform more tailored drug administration in the future.
Collapse
Affiliation(s)
- Bhavya Bhushan
- Department of Human Anatomy and Cell Science, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
- Department of Anatomy and Cell Biology, School of Biomedical Sciences, Faculty of Science, McGill University, Montreal, QC H3A 0C7, Canada
| | - Rosa Iranpour
- Department of Human Anatomy and Cell Science, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Amirmohammad Eshtiaghi
- Department of Human Anatomy and Cell Science, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Simone C da Silva Rosa
- Department of Human Anatomy and Cell Science, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Benjamin W Lindsey
- Department of Human Anatomy and Cell Science, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Joseph W Gordon
- Department of Human Anatomy and Cell Science, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
- Department of Biomedical Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| |
Collapse
|
8
|
Mutalik C, Nivedita, Sneka C, Krisnawati DI, Yougbaré S, Hsu CC, Kuo TR. Zebrafish Insights into Nanomaterial Toxicity: A Focused Exploration on Metallic, Metal Oxide, Semiconductor, and Mixed-Metal Nanoparticles. Int J Mol Sci 2024; 25:1926. [PMID: 38339204 PMCID: PMC10856345 DOI: 10.3390/ijms25031926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/27/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Nanomaterials are widely used in various fields, and ongoing research is focused on developing safe and sustainable nanomaterials. Using zebrafish as a model organism for studying the potentially toxic effects of nanomaterials highlights the importance of developing safe and sustainable nanomaterials. Studies conducted on nanomaterials and their toxicity and potential risks to human and environmental health are vital in biomedical sciences. In the present review, we discuss the potential toxicity of nanomaterials (inorganic and organic) and exposure risks based on size, shape, and concentration. The review further explores various types of nanomaterials and their impacts on zebrafish at different levels, indicating that exposure to nanomaterials can lead to developmental defects, changes in gene expressions, and various toxicities. The review also covers the importance of considering natural organic matter and chorion membranes in standardized nanotoxicity testing. While some nanomaterials are biologically compatible, metal and semiconductor nanomaterials that enter the water environment can increase toxicity to aquatic creatures and can potentially accumulate in the human body. Further investigations are necessary to assess the safety of nanomaterials and their impacts on the environment and human health.
Collapse
Affiliation(s)
- Chinmaya Mutalik
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan;
| | - Nivedita
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (N.); (C.S.)
| | - Chandrasekaran Sneka
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (N.); (C.S.)
| | - Dyah Ika Krisnawati
- Department of Nursing, Faculty of Nursing and Midwifery, Universitas Nahdlatul Ulama Surabaya, Surabaya 60237, East Java, Indonesia;
| | - Sibidou Yougbaré
- Institut de Recherche en Sciences de La Santé/Direction Régionale du Centre Ouest (IRSS/DRCO), Nanoro BP 218, 11, Burkina Faso;
| | - Chuan-Chih Hsu
- Division of Cardiovascular Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiovascular Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Tsung-Rong Kuo
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan;
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (N.); (C.S.)
- Stanford Byers Center for Biodesign, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
9
|
Zhang W, Sun J, Liu F, Li S, Wang X, Su L, Liu G. Alleviative Effect of Lactoferrin Interventions Against the Hepatotoxicity Induced by Titanium Dioxide Nanoparticles. Biol Trace Elem Res 2024; 202:624-642. [PMID: 37191759 DOI: 10.1007/s12011-023-03702-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/08/2023] [Indexed: 05/17/2023]
Abstract
The current study was designed to investigate the alleviative effect of lactoferrin interventions against the hepatotoxicity induced by titanium dioxide nanoparticles (TiO2-NPs). Thirty male Wistar rats were divided into six groups with 5 rats in each group. The first and second groups were intragastrically administered normal saline and TiO2-NPs (100 mg/kg body weight) as the negative control (NC) and TiO2-NP groups. The third, fourth, and fifth groups were intragastrically administered lactoferrin at concentrations of 100, 200, and 400 mg/kg body weight in addition to TiO2-NPs (100 mg/kg body weight). The sixth group was intragastrically administered Fuzheng Huayu (FZHY) capsules at a concentration of 4.6 g/kg body weight in addition to TiO2-NPs (100 mg/kg body weight) as the positive control group. After treatment for 4 weeks, the concentrations of lactoferrin were optimized based on the liver index and function results. Subsequently, the alleviative effects of lactoferrin interventions against TiO2-NP-induced hepatotoxicity in rat liver tissues, including the effects on histological damage, oxidative stress-related damage, inflammation, fibrosis, DNA damage, apoptosis, and gene expression, were investigated using histopathological, biochemical, and transcriptomic assays. The results showed that 200 mg/kg lactoferrin interventions for 4 weeks not only ameliorated the liver dysfunction and histopathological damage caused by TiO2-NP exposure but also inhibited the oxidative stress-related damage, inflammation, fibrosis, DNA damage, and apoptosis in the liver tissues of TiO2-NP-exposed rats. The transcriptomic results confirmed that the alleviative effect of lactoferrin interventions against the TiO2-NP exposure-induced hepatotoxicity was related to the activation of the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Wenqi Zhang
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao North Street, Hohhot, 010050, Inner Mongolia, China
| | - Jiaxin Sun
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao North Street, Hohhot, 010050, Inner Mongolia, China
| | - Fangyuan Liu
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao North Street, Hohhot, 010050, Inner Mongolia, China
| | - Shubin Li
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao North Street, Hohhot, 010050, Inner Mongolia, China
| | - Xianjue Wang
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao North Street, Hohhot, 010050, Inner Mongolia, China
| | - Liya Su
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao North Street, Hohhot, 010050, Inner Mongolia, China
| | - Gang Liu
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao North Street, Hohhot, 010050, Inner Mongolia, China.
| |
Collapse
|
10
|
Tian Z, Feng Y, Yang Y, Liu X, Qu G, Yang Y, Wang X, Wang J, Zhang P, Yao W. Combining nanoparticle albumin-bound paclitaxel with camrelizumab in advanced soft tissue sarcoma: activity, safety, and future perspectives. Front Pharmacol 2024; 15:1335054. [PMID: 38362151 PMCID: PMC10867195 DOI: 10.3389/fphar.2024.1335054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
Background: It is still uncertain whether Nanoparticle albumin-bound paclitaxel (nab-paclitaxel) and programmed cell death protein 1 (PD-1) inhibitor have synergistic effects on metastatic soft tissue sarcomas (STSs). The purpose of this study was to evaluate the safety and activity of nab-paclitaxel plus camrelizumab (a PD-1 inhibitor) in patients with advanced STS who had previously failed chemotherapy. Methods: In this single-center, open-label, single-arm phase II clinical trial, patients with advanced (unresectable or metastatic) STS who had previously failed chemotherapy received up to six cycles of nab-paclitaxel plus camrelizumab, whereas camrelizumab treatment was continued for up to 1 year. The median progression-free survival (PFS), objective response rate (ORR) and safety were collected and evaluated. Results: This trial included 40 patients (28 men and 12 women). The overall ORR was 22.5%, and the median PFS was 1.65 months (95% confidence interval [CI], 1.3-2.0 months). Patients with epithelioid sarcoma demonstrated a longer PFS compared with those with other histological subtypes (2.3 months vs. 1.5 months, respectively); however, this difference was not significant. Patients who had received only one line of previous chemotherapy had a significantly longer PFS compared with those who had undergone two or more lines of previous chemotherapy (2.8 months vs. 1.3 months, respectively, p = 0.046). In terms of safety, the toxicity of this combination therapy is mild and no serious adverse events have occurred. Conclusion: Nab-paclitaxel plus camrelizumab exhibited modest activity and mild toxicity in treating epithelioid sarcoma, angiosarcoma, and fibrosarcoma. The overall effectiveness of this treatment regimen for advanced STS is relatively low. Further research on combining nab-paclitaxel with effective drugs, including chemotherapy and targeted agents, for these specific STS subtypes is needed.
Collapse
Affiliation(s)
- Zhichao Tian
- Department of Bone and Soft Tissue, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Yushen Feng
- School of medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Yang Yang
- Modern educational technology center, Henan University of Economics and Law, Zhengzhou, China
| | - Xu Liu
- Department of Bone and Soft Tissue, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Guoxin Qu
- Department of Bone and Soft Tissue, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Yonghao Yang
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Xin Wang
- Department of Bone and Soft Tissue, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Jiaqiang Wang
- Department of Bone and Soft Tissue, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Peng Zhang
- Department of Bone and Soft Tissue, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Weitao Yao
- Department of Bone and Soft Tissue, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
11
|
Mo Z, Deng Y, Bao Y, Liu J, Jiang Y. Evaluation of cardiotoxicity of anthracycline-containing chemotherapy regimens in patients with bone and soft tissue sarcomas: A study of the FDA adverse event reporting system joint single-center real-world experience. Cancer Med 2023; 12:21709-21724. [PMID: 38054208 PMCID: PMC10757145 DOI: 10.1002/cam4.6730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/24/2023] [Accepted: 11/07/2023] [Indexed: 12/07/2023] Open
Abstract
OBJECTIVES To assess the occurrence of cardiotoxicity in patients with tumors receiving anthracycline-based chemotherapy, especially for sarcomas. METHODS This study summarized the types and frequency of adverse events (AEs) for three anthracyclines from the FDA adverse event reporting system (FAERS) database. FAERS data from January 2004 to June 2022 were collected and analyzed. Disproportionality analyses, logistic regression, and descriptive analysis were used to compare the differences in cardiac disorders. A retrospective cohort study was conducted in a single center between December 2008 and May 2022. Our hospital-treated patients with bone and soft tissue sarcomas (BSTSs) with anthracycline-containing chemotherapy were analyzed. Serum markers, echocardiography, and electrocardiography have been used to evaluate cardiotoxic events. RESULTS One hundred thousand and seventy-five AE reports were obtained for doxorubicin (ADM), epirubicin (EPI), and liposome doxorubicin (L-ADM) from the FAERS database. ADM (OR = 3.1, p < 0.001), EPI (OR = 1.5, p < 0.001), and sarcomas (OR = 1.8, p < 0.001) may increase the probability of cardiac disorders. Cardiac failure, cardiotoxicity, and cardiomyopathy were anthracyclines' top 3 frequent AEs. Among patients receiving ADM-containing therapy, those with ADM applied at doses ≥75 mg/m2 /cycle were more likely to develop cardiac disorders than the other subgroups (OR = 3.5, p < 0.001). Patients younger than 18 are more likely to benefit from dexrazoxane prevention of cardiac failure. Six hundred and eighty-three patients with BSTSs receiving anthracycline-based chemotherapy were analyzed in our center. Patients receiving ADM-containing chemotherapy were likelier to experience abnormalities in serum troponin-T and left ventricular ejection fraction (p < 0.05). 2.0% (6/300) of patients receiving ADM-containing chemotherapy required adjustment of the chemotherapy regimen because of cardiotoxicity, whereas none were in the EPI or L-ADM groups. CONCLUSIONS AND RELEVANCE Among patients receiving anthracycline-containing therapy, patients with BSTSs were more likely to develop cardiac disorders than other tumors. In addition, patients with BSTSs receiving ADM chemotherapy had a higher likelihood of cardiotoxic events than those receiving EPI or L-ADM.
Collapse
Affiliation(s)
- Zeming Mo
- Division of Medical Oncology, Cancer Center, West China HospitalSichuan UniversityChengduChina
| | - Yaotiao Deng
- Division of Medical Oncology, Cancer Center, West China HospitalSichuan UniversityChengduChina
| | - Yiwen Bao
- Department of OncologyThe People's Hospital of QiannanDuyunGuizhouChina
| | - Jie Liu
- Division of Medical Oncology, Cancer Center, West China HospitalSichuan UniversityChengduChina
| | - Yu Jiang
- Division of Medical Oncology, Cancer Center, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
12
|
Sallabanda M, Vera JA, Pérez JM, Matute R, Montero M, de Pablo A, Cerrón F, Valero M, Castro J, Mazal A, Miralbell R. Five-Fraction Proton Therapy for the Treatment of Skull Base Chordomas and Chondrosarcomas: Early Results of a Prospective Series and Description of a Clinical Trial. Cancers (Basel) 2023; 15:5579. [PMID: 38067283 PMCID: PMC10705113 DOI: 10.3390/cancers15235579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/21/2024] Open
Abstract
(1) Background: Our purpose is to describe the design of a phase II clinical trial on 5-fraction proton therapy for chordomas and chondrosarcomas of the skull base and to present early results in terms of local control and clinical tolerance of the first prospective series. (2) Methods: A dose of 37.5 GyRBE in five fractions was proposed for chordomas and 35 GyRBE in five fractions for chondrosarcomas. The established inclusion criteria are age ≥ 18 years, Karnofsky Performance Status ≥ 70%, clinical target volume up to 50 cc, and compliance with dose restrictions to the critical organs. Pencil beam scanning was used for treatment planning, employing four to six beams. (3) Results: A total of 11 patients (6 chordomas and 5 chondrosarcomas) were included. The median follow-up was 12 months (9-15 months) with 100% local control. Acute grade I-II headache (64%), grade I asthenia and alopecia (45%), grade I nausea (27%), and grade I dysphagia (18%) were described. Late toxicity was present in two patients with grade 3 temporal lobe necrosis. (4) Conclusions: Hypofractionated proton therapy is showing encouraging preliminary results. However, to fully assess the efficacy of this therapeutic approach, future trials with adequate sample sizes and extended follow-ups are necessary.
Collapse
Affiliation(s)
- Morena Sallabanda
- Centro de Protonterapia Quironsalud, Pozuelo de Alarcón, 28223 Madrid, Spain; (J.A.V.); (J.M.P.); (A.M.); (R.M.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
de Nigris F, Meo C, Palinski W. Combination of Genomic Landsscape and 3D Culture Functional Assays Bridges Sarcoma Phenotype to Target and Immunotherapy. Cells 2023; 12:2204. [PMID: 37681936 PMCID: PMC10486752 DOI: 10.3390/cells12172204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023] Open
Abstract
Genomic-based precision medicine has not only improved tumour therapy but has also shown its weaknesses. Genomic profiling and mutation analysis have identified alterations that play a major role in sarcoma pathogenesis and evolution. However, they have not been sufficient in predicting tumour vulnerability and advancing treatment. The relative rarity of sarcomas and the genetic heterogeneity between subtypes also stand in the way of gaining statistically significant results from clinical trials. Personalized three-dimensional tumour models that reflect the specific histologic subtype are emerging as functional assays to test anticancer drugs, complementing genomic screening. Here, we provide an overview of current target therapy for sarcomas and discuss functional assays based on 3D models that, by recapitulating the molecular pathways and tumour microenvironment, may predict patient response to treatments. This approach opens new avenues to improve precision medicine when genomic and pathway alterations are not sufficient to guide the choice of the most promising treatment. Furthermore, we discuss the aspects of the 3D culture assays that need to be improved, such as the standardisation of growth conditions and the definition of in vitro responses that can be used as a cut-off for clinical implementation.
Collapse
Affiliation(s)
- Filomena de Nigris
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Concetta Meo
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Wulf Palinski
- Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA;
| |
Collapse
|
14
|
Zhang Y, Wang R, Liu R, Xie S, Jiao F, Li Y, Xin J, Zhang H, Wang Z, Yan Y. Delivery of miR-3529-3p using MnO 2 -SiO 2 -APTES nanoparticles combined with phototherapy suppresses lung adenocarcinoma progression by targeting HIGD1A. Thorac Cancer 2023; 14:913-928. [PMID: 36808485 PMCID: PMC10067359 DOI: 10.1111/1759-7714.14823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND The present study aimed to investigate the function of miR-3529-3p in lung adenocarcinoma and MnO2 -SiO2 -APTES (MSA) as a promising multifunctional delivery agent for lung adenocarcinoma therapy. METHODS Expression levels of miR-3529-3p were evaluated in lung carcinoma cells and tissues by qRT-PCR. The effects of miR-3529-3p on apoptosis, proliferation, metastasis and neovascularization were assessed by CCK-8, FACS, transwell and wound healing assays, tube formation and xenografts experiments. Luciferase reporter assays, western blot, qRT-PCR and mitochondrial complex assay were used to determine the targeting relationship between miR-3529-3p and hypoxia-inducible gene domain family member 1A (HIGD1A). MSA was fabricated using MnO2 nanoflowers, and its heating curves, temperature curves, IC50, and delivery efficiency were examined. The hypoxia and reactive oxygen species (ROS) production was investigated by nitro reductase probing, DCFH-DA staining and FACS. RESULTS MiR-3529-3p expression was reduced in lung carcinoma tissues and cells. Transfection of miR-3529-3p could promote apoptosis and suppress cell proliferation, migration and angiogenesis. As a target of miR-3529-3p, HIGD1A expression was downregulated, through which miR-3529-3p could disrupt the activities of complexes III and IV of the respiratory chain. The multifunctional nanoparticle MSA could not only efficiently deliver miR-3529-3p into cells, but also enhance the antitumor function of miR-3529-3p. The underlying mechanism may be that MSA alleviates hypoxia and has synergistic effects in cellular ROS promotion with miR-3529-3p. CONCLUSIONS Our results establish the antioncogenic role of miR-3529-3p, and demonstrate that miR-3529-3p delivered by MSA has enhanced tumor suppressive effects, probably through elevating ROS production and thermogenesis.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Biochemistry and Molecular BiologyBinzhou Medical UniversityYantaiP. R. China
- Oncology DepartmentBinzhou Medical University HospitalBinzhouP. R. China
| | - Ran‐Ran Wang
- Department of Biochemistry and Molecular BiologyBinzhou Medical UniversityYantaiP. R. China
| | - Rui Liu
- Department of Biochemistry and Molecular BiologyBinzhou Medical UniversityYantaiP. R. China
| | - Shu‐Yang Xie
- Department of Biochemistry and Molecular BiologyBinzhou Medical UniversityYantaiP. R. China
| | - Fei Jiao
- Department of Biochemistry and Molecular BiologyBinzhou Medical UniversityYantaiP. R. China
| | - You‐Jie Li
- Department of Biochemistry and Molecular BiologyBinzhou Medical UniversityYantaiP. R. China
| | - Jiaxuan Xin
- Department of Biochemistry and Molecular BiologyBinzhou Medical UniversityYantaiP. R. China
| | - Han Zhang
- Department of Biochemistry and Molecular BiologyBinzhou Medical UniversityYantaiP. R. China
| | - Zhenbo Wang
- Oncology DepartmentBinzhou Medical University HospitalBinzhouP. R. China
| | - Yun‐Fei Yan
- Department of Biochemistry and Molecular BiologyBinzhou Medical UniversityYantaiP. R. China
| |
Collapse
|
15
|
Seong G, D’Angelo SP. New therapeutics for soft tissue sarcomas: Overview of current immunotherapy and future directions of soft tissue sarcomas. Front Oncol 2023; 13:1150765. [PMID: 37007160 PMCID: PMC10052453 DOI: 10.3389/fonc.2023.1150765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
Soft tissue sarcoma is a rare and aggressive disease with a 40 to 50% metastasis rate. The limited efficacy of traditional approaches with surgery, radiation, and chemotherapy has prompted research in novel immunotherapy for soft tissue sarcoma. Immune checkpoint inhibitors such as anti-CTLA-4 and PD-1 therapies in STS have demonstrated histologic-specific responses. Some combinations of immunotherapy with chemotherapy, TKI, and radiation were effective. STS is considered a ‘cold’, non-inflamed tumor. Adoptive cell therapies are actively investigated in STS to enhance immune response. Genetically modified T-cell receptor therapy targeting cancer testis antigens such as NY-ESO-1 and MAGE-A4 demonstrated durable responses, especially in synovial sarcoma. Two early HER2-CAR T-cell trials have achieved stable disease in some patients. In the future, CAR-T cell therapies will find more specific targets in STS with a reliable response. Early recognition of T-cell induced cytokine release syndrome is crucial, which can be alleviated by immunosuppression such as steroids. Further understanding of the immune subtypes and biomarkers will promote the advancement of soft tissue sarcoma treatment.
Collapse
Affiliation(s)
- Gyuhee Seong
- Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, United States
| | - Sandra P. D’Angelo
- Department of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, United States
- *Correspondence: Sandra P. D’Angelo,
| |
Collapse
|
16
|
Fuchs JW, Schulte BC, Fuchs JR, Agulnik M. Targeted therapies for the treatment of soft tissue sarcoma. Front Oncol 2023; 13:1122508. [PMID: 36969064 PMCID: PMC10034045 DOI: 10.3389/fonc.2023.1122508] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023] Open
Abstract
Soft tissue sarcomas are rare malignant tumors derived from mesenchymal cells that have a high morbidity and mortality related to frequent occurrence of advanced and metastatic disease. Over the past two decades there have been significant advances in the use of targeted therapies for the treatment of soft tissue sarcoma. The ability to study various cellular markers and pathways related to sarcomagenesis has led to the creation and approval of multiple novel therapies. Herein, we describe the current landscape of targeted medications used in the management of advanced or metastatic soft tissue sarcomas, excluding GIST. We distinguish three categories: targeted therapies that have current US Food and Drug Administration (FDA) approval for treatment of soft tissue sarcoma, non-FDA approved targeted therapies, and medications in development for treatment of patients with soft tissue sarcoma.
Collapse
Affiliation(s)
- Jeffrey W. Fuchs
- Department of Medicine, McGaw Medical Center of Northwestern University, Chicago, IL, United States
| | - Brian C. Schulte
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Joseph R. Fuchs
- Department of Medicine, McGaw Medical Center of Northwestern University, Chicago, IL, United States
| | - Mark Agulnik
- Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
- *Correspondence: Mark Agulnik,
| |
Collapse
|
17
|
Donovan J, Deng Z, Bian F, Shukla S, Gomez-Arroyo J, Shi D, Kalinichenko VV, Kalin TV. Improving anti-tumor efficacy of low-dose Vincristine in rhabdomyosarcoma via the combination therapy with FOXM1 inhibitor RCM1. Front Oncol 2023; 13:1112859. [PMID: 36816948 PMCID: PMC9933126 DOI: 10.3389/fonc.2023.1112859] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/06/2023] [Indexed: 02/05/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is a highly metastatic soft-tissue sarcoma that often develops resistance to current therapies, including vincristine. Since the existing treatments have not significantly improved survival, there is a critical need for new therapeutic approaches for RMS patients. FOXM1, a known oncogene, is highly expressed in RMS, and is associated with the worst prognosis in RMS patients. In the present study, we found that the combination treatment with specific FOXM1 inhibitor RCM1 and low doses of vincristine is more effective in increasing apoptosis and decreasing RMS cell proliferation in vitro compared to single drugs alone. Since RCM1 is highly hydrophobic, we developed innovative nanoparticle delivery system containing poly-beta-amino-esters and folic acid (NPFA), which efficiently delivers RCM1 to mouse RMS tumors in vivo. The combination of low doses of vincristine together with intravenous administration of NPFA nanoparticles containing RCM1 effectively reduced RMS tumor volumes, increased tumor cell death and decreased tumor cell proliferation in RMS tumors compared to RCM1 or vincristine alone. The combination therapy was non-toxic as demonstrated by liver metabolic panels using peripheral blood serum. Using RNA-seq of dissected RMS tumors, we identified Chac1 as a uniquely downregulated gene after the combination treatment. Knockdown of Chac1 in RMS cells in vitro recapitulated the effects of the combination therapy. Altogether, combination treatment with low doses of vincristine and nanoparticle delivery of FOXM1 inhibitor RCM1 in a pre-clinical model of RMS has superior anti-tumor effects and decreases CHAC1 while reducing vincristine toxicity.
Collapse
Affiliation(s)
- Johnny Donovan
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Zicheng Deng
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States,The Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, United States,Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Fenghua Bian
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Samriddhi Shukla
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Jose Gomez-Arroyo
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States,Division of Pulmonary and Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Donglu Shi
- The Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, United States
| | - Vladimir V. Kalinichenko
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States,Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Tanya V. Kalin
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States,*Correspondence: Tanya V. Kalin,
| |
Collapse
|
18
|
In Vitro Studies of Pegylated Magnetite Nanoparticles in a Cellular Model of Viral Oncogenesis: Initial Studies to Evaluate Their Potential as a Future Theranostic Tool. Pharmaceutics 2023; 15:pharmaceutics15020488. [PMID: 36839809 PMCID: PMC9967771 DOI: 10.3390/pharmaceutics15020488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/17/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Magnetic nanosystems represent promising alternatives to the traditional diagnostic and treatment procedures available for different pathologies. In this work, a series of biological tests are proposed, aiming to validate a magnetic nanoplatform for Kaposi's sarcoma treatment. The selected nanosystems were polyethylene glycol-coated iron oxide nanoparticles (MAG.PEG), which were prepared by the hydrothermal method. Physicochemical characterization was performed to verify their suitable physicochemical properties to be administered in vivo. Exhaustive biological assays were conducted, aiming to validate this platform in a specific biomedical field related to viral oncogenesis diseases. As a first step, the MAG.PEG cytotoxicity was evaluated in a cellular model of Kaposi's sarcoma. By phase contrast microscopy, it was found that cell morphology remained unchanged regardless of the nanoparticles' concentration (1-150 µg mL-1). The results, arising from the crystal violet technique, revealed that the proliferation was also unaffected. In addition, cell viability analysis by MTS and neutral red assays revealed a significant increase in metabolic and lysosomal activity at high concentrations of MAG.PEG (100-150 µg mL-1). Moreover, an increase in ROS levels was observed at the highest concentration of MAG.PEG. Second, the iron quantification assays performed by Prussian blue staining showed that MAG.PEG cellular accumulation is dose dependent. Furthermore, the presence of vesicles containing MAG.PEG inside the cells was confirmed by TEM. Finally, the MAG.PEG steering was achieved using a static magnetic field generated by a moderate power magnet. In conclusion, MAG.PEG at a moderate concentration would be a suitable drug carrier for Kaposi's sarcoma treatment, avoiding adverse effects on normal tissues. The data included in this contribution appear as the first stage in proposing this platform as a suitable future theranostic to improve Kaposi's sarcoma therapy.
Collapse
|