1
|
Cao Z, Zhuo H, Zhu W, Peng X, Li J. Rational construction of PCL-PEG/CS/AST nanofiber for bone repair and regeneration. Front Bioeng Biotechnol 2025; 12:1515043. [PMID: 39867476 PMCID: PMC11757281 DOI: 10.3389/fbioe.2024.1515043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/27/2024] [Indexed: 01/28/2025] Open
Abstract
Humerus greater tuberosity (HGT) avulsion fracture is one of the most common types of proximal humerus fractures. The presence of motion and gap lead to the failure of implants, due to the force pulling from the supraspinatus. In this work, electrospinning technology was applied to fabricate PCL-PEG/CS/AST nanofiber with superior biocompatibility and mechanical property. Furthermore, PCL-PEG/CS/AST nanofiber could promote proliferation and osteogenic differentiation of bone mesenchymal stem cells (BMSCs) in vitro. We believe that this work indicates a promising way to promote the union of HGT avulsion fractures by using PCL-PEG/CS/AST nanofiber.
Collapse
Affiliation(s)
- Zhengyu Cao
- Department of Sports Medicine, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine (FJTCM), Fuzhou, China
| | - Hongwu Zhuo
- Department of Sports Medicine, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine (FJTCM), Fuzhou, China
| | - Wendong Zhu
- Key Laboratory of Polymer Materials and Products of Universities in Fujian, Department of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian, China
| | - Xiangfang Peng
- Key Laboratory of Polymer Materials and Products of Universities in Fujian, Department of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian, China
| | - Jian Li
- Department of Sports Medicine, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine (FJTCM), Fuzhou, China
| |
Collapse
|
2
|
Wang X, Zeng J, Gan D, Ling K, He M, Li J, Lu Y. Recent Strategies and Advances in Hydrogel-Based Delivery Platforms for Bone Regeneration. NANO-MICRO LETTERS 2024; 17:73. [PMID: 39601916 PMCID: PMC11602938 DOI: 10.1007/s40820-024-01557-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/01/2024] [Indexed: 11/29/2024]
Abstract
Bioactive molecules have shown great promise for effectively regulating various bone formation processes, rendering them attractive therapeutics for bone regeneration. However, the widespread application of bioactive molecules is limited by their low accumulation and short half-lives in vivo. Hydrogels have emerged as ideal carriers to address these challenges, offering the potential to prolong retention times at lesion sites, extend half-lives in vivo and mitigate side effects, avoid burst release, and promote adsorption under physiological conditions. This review systematically summarizes the recent advances in the development of bioactive molecule-loaded hydrogels for bone regeneration, encompassing applications in cranial defect repair, femoral defect repair, periodontal bone regeneration, and bone regeneration with underlying diseases. Additionally, this review discusses the current strategies aimed at improving the release profiles of bioactive molecules through stimuli-responsive delivery, carrier-assisted delivery, and sequential delivery. Finally, this review elucidates the existing challenges and future directions of hydrogel encapsulated bioactive molecules in the field of bone regeneration.
Collapse
Affiliation(s)
- Xiao Wang
- Scientific and Technological Innovation Center for Biomedical Materials and Clinical Research, Guangyuan Key Laboratory of Multifunctional Medical Hydrogel, Guangyuan Central Hospital, Guangyuan, 628000, People's Republic of China
| | - Jia Zeng
- Scientific and Technological Innovation Center for Biomedical Materials and Clinical Research, Guangyuan Key Laboratory of Multifunctional Medical Hydrogel, Guangyuan Central Hospital, Guangyuan, 628000, People's Republic of China
| | - Donglin Gan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Kun Ling
- Scientific and Technological Innovation Center for Biomedical Materials and Clinical Research, Guangyuan Key Laboratory of Multifunctional Medical Hydrogel, Guangyuan Central Hospital, Guangyuan, 628000, People's Republic of China
| | - Mingfang He
- Scientific and Technological Innovation Center for Biomedical Materials and Clinical Research, Guangyuan Key Laboratory of Multifunctional Medical Hydrogel, Guangyuan Central Hospital, Guangyuan, 628000, People's Republic of China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Yongping Lu
- Scientific and Technological Innovation Center for Biomedical Materials and Clinical Research, Guangyuan Key Laboratory of Multifunctional Medical Hydrogel, Guangyuan Central Hospital, Guangyuan, 628000, People's Republic of China.
| |
Collapse
|
3
|
Huang L, Cai P, Bian M, Yu J, Xiao L, Lu S, Wang J, Chen W, Han G, Xiang X, Liu X, Jiang L, Li Y, Zhang J. Injectable and high-strength PLGA/CPC loaded ALN/MgO bone cement for bone regeneration by facilitating osteogenesis and inhibiting osteoclastogenesis in osteoporotic bone defects. Mater Today Bio 2024; 26:101092. [PMID: 38873105 PMCID: PMC11169522 DOI: 10.1016/j.mtbio.2024.101092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/18/2024] [Accepted: 05/14/2024] [Indexed: 06/15/2024] Open
Abstract
Osteoporosis (OP) can result in slower bone regeneration than the normal condition due to the imbalance between osteogenesis and osteoclastogenesis, making osteoporotic bone defects healing a significant clinical challenge. Calcium phosphate cement (CPC) is a promising bone substitute material due to its good osteoinductive activity, however, the drawbacks such as fragility, slow degradation rate and incapability to control bone loss restrict its application in osteoporotic bone defects treatment. Currently, we developed the PLGA electrospun nanofiber sheets to carry alendronate (ALN) and magnesium oxide nanoparticle (nMgO) into CPC, therefore, to obtain a high-strength bone cement (C/AM-PL/C). The C/AM-PL/C bone cement had high mechanical strength, anti-washout ability, good injection performance and drug sustained release capacity. More importantly, the C/AM-PL/C cement promoted the osteogenic differentiation of bone marrow mesenchymal stem cells and neovascularization via the release of Mg2+ (from nMgO) and Ca2+ (during the degradation of CPC), and inhibited osteoclastogenesis via the release of ALN in vitro. Moreover, the injection of C/AM-PL/C cement significantly improved bone healing in an OP model with femur condyle defects in vivo. Altogether, the injectable C/AM-PL/C cement could facilitate osteoporotic bone regeneration, demonstrating its capacity as a promising candidate for treatment of osteoporotic bone defects.
Collapse
Affiliation(s)
- Lei Huang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Peihao Cai
- The Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Mengxuan Bian
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jieqin Yu
- Department of Orthopedic Surgery, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Lan Xiao
- School of Medicine and Dentistry, Griffith University, Gold COast, QLD, 4222, Australia
| | - Shunyi Lu
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jiayi Wang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Weisin Chen
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Guanjie Han
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xingdong Xiang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xin Liu
- The Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Libo Jiang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yulin Li
- The Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jian Zhang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| |
Collapse
|
4
|
Tang G, Zhu L, Wang W, Zuo D, Shi C, Yu X, Chen R. Alendronate-functionalized double network hydrogel scaffolds for effective osteogenesis. Front Chem 2022; 10:977419. [PMID: 36059871 PMCID: PMC9428824 DOI: 10.3389/fchem.2022.977419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
Development of artificial bone substitutes mimicking the extracellular matrix is a promising strategy for bone repair and regeneration. In views of the actual requirement of biomechanics, biodegradability, and bioactivity, herein, a double-network (DN) hydrogel was constructed by interspersing a methacrylated gelatin (GelMA) network into alendronate (ALN)-modified oxidized alginate (OSA) network via Schiff base reaction and photo-crosslinking process to promote in situ bone regeneration. This GelMA@OSA-ALN DN hydrogel possessed favorable network and pores, good biocompatibility, and enhanced biomechanics. Notably, the introduction of Schiff base furnished the ND hydrogel scaffold with pH-responsive biodegradation and sustained ALN drug release delivery, which could provide effective bioactivity, upregulate osteogenesis-related genes, and promote the cell viability, growth, proliferation, and osteogenesis differentiation for bone regeneration. Therefore, we provide a new insight to develop functional DN hydrogel scaffold toward governing the on-demand drug release and achieving the stem cell therapy, which will be developed into the minimally invasive gelling system to prolong local delivery of bisphosphonates for the bone-related diseases.
Collapse
Affiliation(s)
- Guoke Tang
- Department of Orthopedics, Second Affiliated Hospital of Naval Medical University, Shanghai, China
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Liang Zhu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Weiheng Wang
- Department of Orthopedics, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Dongqing Zuo
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Changgui Shi
- Department of Orthopedics, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xiaojie Yu
- Department of Orthopedics, Hunan Aerospace Hospital, Changsha, Hunan, China
| | - Rui Chen
- Department of Orthopedics, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|