Liu Z, Ruan Z, Long H, Zhao R, Zhu Y, Lin Z, Chen P, Zhao S. Identification of ceRNA networks in type H and L vascular endothelial cells through integrated bioinformatics methods.
ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024;
49:562-577. [PMID:
39019785 PMCID:
PMC11255190 DOI:
10.11817/j.issn.1672-7347.2024.230343]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Indexed: 07/19/2024]
Abstract
OBJECTIVES
Type H blood vessels are a subtype of bone-specific microvessels (CD31hiEmcnhi) that play an important regulatory role in the coupling of angiogenesis and osteogenesis. Despite reports on the distinct roles of type H and L vessels under physiological and pathological bone conditions, their genetic differences remain to be elucidated. This study aims to construct a competitive endogenous RNA (ceRNA) network of key gene for differencial expression (DE) in type H and L vascular endothelial cells (ECs) through integrated bioinformatic methods.
METHODS
We downloaded relevant raw data from the ArrayExpress and the Gene Expression Omnibus (GEO) database and used the Limma R-Bioconductor package to screen for DE lncRNAs, DE miRNAs, and DE mRNAs between type H and L vascular ECs. A total ceRNA network was constructed based on their interactions, followed by refinement using protein-protein interaction (PPI) networks to select upregulated and downregulated key genes. Enrichment analysis was performed on these key genes. Random validation was conducted using flow cytometry and real-time RT-PCR.
RESULTS
A total of 1 761 DE mRNAs, 187 DE lncRNAs, and 159 DE miRNAs were identified, and a comprehensive ceRNA network was constructed based on their interactions. Six upregulated (Itga5, Kdr, Tjp1, Pecam1, Cdh5, and Ptk2) and 2 downregulated (Csf1r and Il10) key genes were selected via PPI network to construct a subnetwork of ceRNAs related to these key genes. Upregulated key genes were mainly enriched in negative regulation of angiogenesis and vascular apoptosis. Results from flow cytometry and real-time RT-PCR were consistent with bioinformatics analysis.
CONCLUSIONS
This study proposes a ceRNA network associated with upregulated and downregulated type H and L vascular ECs based on selected key genes, providing new insights into the regulatory mechanisms of type H and L vascular ECs in bone metabolism.
Collapse