1
|
Suo M, Liu L, Fan H, Li N, Pan H, Hrynsphan D, Tatsiana S, Robles-Iglesias R, Wang Z, Chen J. Advancements in chain elongation technology: Transforming lactic acid into caproic acid for sustainable biochemical production. BIORESOURCE TECHNOLOGY 2025; 425:132312. [PMID: 40023331 DOI: 10.1016/j.biortech.2025.132312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 02/13/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
This review provides an insight into the chain-elongation technology for the production of caproic acid, a chemical widely used in the food, pharmaceutical, and cosmetic industries, from lactic acid in waste organic matter. The evolution of the technology is traced, the reaction mechanism is elucidated, and the properties of key microbial agents capable of carrying out the chain-elongation technology are summarized and compared, including pure bacterial isolates and reactor-mixed microorganisms. Furthermore, the parameters that regulate caproic acid formation by influencing microbial activity, competitive pathways, product selection, and carbon flow distribution, such as pH, temperature, electron donor, electron acceptor, and hydrogen partial pressure, are highlighted and discussed. It is worth noting that various caproic acid product extraction technologies were also summarized and assessed. Finally, based on the perspective of interdisciplinary field, bold suggestions for the future research direction are put forward.
Collapse
Affiliation(s)
- Minyu Suo
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China; College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Lingxiu Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China; College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Hongye Fan
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China; College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Nan Li
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China; College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hua Pan
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Dzmitry Hrynsphan
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk 220030, Belarus
| | - Savitskaya Tatsiana
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk 220030, Belarus
| | - Raúl Robles-Iglesias
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research/Centro de Investigaciones Científicas Avanzadas (CICA), BIOENGIN Group, University of La Coruña, La Coruña 15008, Spain
| | - Zeyu Wang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Jun Chen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China.
| |
Collapse
|
2
|
Mendoza MDL, Vaca L, Erazo P, Villa P. Perspectives on carboxylates generation from Ecuadorian agro-wastes. BIORESOURCE TECHNOLOGY 2024; 407:131080. [PMID: 38992479 DOI: 10.1016/j.biortech.2024.131080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024]
Abstract
Carboxylates generation from banana (peel and pulp), coffee, and cacao fermentation agro-waste, upon uncontrolled and controlled pHs of 6.6 (heat-driven methanogens inactivation) and 5.2 (pH inactivation), was studied. Regarding volatile fatty acids (VFAs), acetic was the highest for cocoa (96.2 g kg-1TVS) at pH 4.5. However, butyric was relevant for banana pulp (90.7 g kg-1TVS), at controlled pH 6.6. The highest medium chain fatty acid (MCFAs) level was hexanoic (cocoa, 3.5 g kg-1TVS), while octanoic reached a maximum of 2.8 g kg-1TVS for coffee at pH 6.6. At pH 5.2 MCFAs yield was relatively low. Uncontrolled pH conditions, using banana resulted in superior VFAs production compared to controlled conditions. Thus, pH became a determining variable when deciding the time and kind of carboxylic acid to be recovered. The bacterial community at the end of the chain elongation process was dominated by phyla Firmicutes, and Clostridium as the most common genera.
Collapse
Affiliation(s)
- Maria de Lourdes Mendoza
- Faculty of Natural Science and Mathematics (FCNM), Environmental and Chemical Sciences Department (DCQA), Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 090902 Guayaquil, Ecuador.
| | - Luis Vaca
- Faculty of Natural Science and Mathematics (FCNM), Environmental and Chemical Sciences Department (DCQA), Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 090902 Guayaquil, Ecuador.
| | - Pablo Erazo
- Biosequence S.A.S Laboratory, Checoslovaquia and Eloy Alfaro E10-95, P.O. Box 170504 Quito, Ecuador
| | - Pablo Villa
- Faculty of Natural Science and Mathematics (FCNM), Environmental and Chemical Sciences Department (DCQA), Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 090902 Guayaquil, Ecuador.
| |
Collapse
|
3
|
Bian B, Zhang W, Yu N, Yang W, Xu J, Logan BE, Saikaly PE. Lactate-mediated medium-chain fatty acid production from expired dairy and beverage waste. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 21:100424. [PMID: 38774191 PMCID: PMC11106833 DOI: 10.1016/j.ese.2024.100424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 05/24/2024]
Abstract
Fruits, vegetables, and dairy products are typically the primary sources of household food waste. Currently, anaerobic digestion is the most used bioprocess for the treatment of food waste with concomitant generation of biogas. However, to achieve a circular carbon economy, the organics in food waste should be converted to new chemicals with higher value than energy. Here we demonstrate the feasibility of medium-chain carboxylic acid (MCCA) production from expired dairy and beverage waste via a chain elongation platform mediated by lactate. In a two-stage fermentation process, the first stage with optimized operational conditions, including varying temperatures and organic loading rates, transformed expired dairy and beverage waste into lactate at a concentration higher than 900 mM C at 43 °C. This lactate was then used to produce >500 mM C caproate and >300 mM C butyrate via microbial chain elongation. Predominantly, lactate-producing microbes such as Lactobacillus and Lacticaseibacillus were regulated by temperature and could be highly enriched under mesophilic conditions in the first-stage reactor. In the second-stage chain elongation reactor, the dominating microbes were primarily from the genera Megasphaera and Caproiciproducens, shaped by varying feed and inoculum sources. Co-occurrence network analysis revealed positive correlations among species from the genera Caproiciproducens, Ruminococcus, and CAG-352, as well as Megasphaera, Bacteroides, and Solobacterium, indicating strong microbial interactions that enhance caproate production. These findings suggest that producing MCCAs from expired dairy and beverage waste via lactate-mediated chain elongation is a viable method for sustainable waste management and could serve as a chemical production platform in the context of building a circular bioeconomy.
Collapse
Affiliation(s)
- Bin Bian
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Wenxiang Zhang
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Najiaowa Yu
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Wei Yang
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jiajie Xu
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- School of Marine Science, Ningbo University, Ningbo, 315211, China
| | - Bruce E. Logan
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Pascal E. Saikaly
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Environmental Science and Engineering Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
4
|
Walters KA, Myers KS, Donohue TJ, Noguera DR. Metagenome-assembled genomes from microbiomes fermenting dairy coproducts. Microbiol Resour Announc 2024; 13:e0017324. [PMID: 38819152 PMCID: PMC11256825 DOI: 10.1128/mra.00173-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/01/2024] [Indexed: 06/01/2024] Open
Abstract
To advance knowledge of microbial communities capable of fermenting agro-industrial residues into value-added products, we report metagenomes of microbial communities from six anaerobic bioreactors that were fed a mixture of ultra-filtered milk permeate and cottage cheese acid whey. These metagenomes produced 122 metagenome-assembled genomes that represent 34 distinct taxa.
Collapse
Affiliation(s)
- Kevin A. Walters
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kevin S. Myers
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Timothy J. Donohue
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Daniel R. Noguera
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Robazza A, Baleeiro FCF, Kleinsteuber S, Neumann A. Two-stage conversion of syngas and pyrolysis aqueous condensate into L-malate. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:85. [PMID: 38907325 PMCID: PMC11191387 DOI: 10.1186/s13068-024-02532-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024]
Abstract
Hybrid thermochemical-biological processes have the potential to enhance the carbon and energy recovery from organic waste. This work aimed to assess the carbon and energy recovery potential of multifunctional processes to simultaneously sequestrate syngas and detoxify pyrolysis aqueous condensate (PAC) for short-chain carboxylates production. To evaluate relevant process parameters for mixed culture co-fermentation of syngas and PAC, two identical reactors were run under mesophilic (37 °C) and thermophilic (55 °C) conditions at increasing PAC loading rates. Both the mesophilic and the thermophilic process recovered at least 50% of the energy in syngas and PAC into short-chain carboxylates. During the mesophilic syngas and PAC co-fermentation, methanogenesis was completely inhibited while acetate, ethanol and butyrate were the primary metabolites. Over 90% of the amplicon sequencing variants based on 16S rRNA were assigned to Clostridium sensu stricto 12. During the thermophilic process, on the other hand, Symbiobacteriales, Syntrophaceticus, Thermoanaerobacterium, Methanothermobacter and Methanosarcina likely played crucial roles in aromatics degradation and methanogenesis, respectively, while Moorella thermoacetica and Methanothermobacter marburgensis were the predominant carboxydotrophs in the thermophilic process. High biomass concentrations were necessary to maintain stable process operations at high PAC loads. In a second-stage reactor, Aspergillus oryzae converted acetate, propionate and butyrate from the first stage into L-malate, confirming the successful detoxification of PAC below inhibitory levels. The highest L-malate yield was 0.26 ± 2.2 molL-malate/molcarboxylates recorded for effluent from the mesophilic process at a PAC load of 4% v/v. The results highlight the potential of multifunctional reactors where anaerobic mixed cultures perform simultaneously diverse process roles, such as carbon fixation, wastewater detoxification and carboxylates intermediate production. The recovered energy in the form of intermediate carboxylates allows for their use as substrates in subsequent fermentative stages.
Collapse
Affiliation(s)
- Alberto Robazza
- Institute of Process Engineering in Life Sciences 2: Electro Biotechnology, Karlsruhe Institute of Technology - KIT, 76131, Karlsruhe, Germany
| | - Flávio C F Baleeiro
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany
| | - Sabine Kleinsteuber
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany
| | - Anke Neumann
- Institute of Process Engineering in Life Sciences 2: Electro Biotechnology, Karlsruhe Institute of Technology - KIT, 76131, Karlsruhe, Germany.
| |
Collapse
|
6
|
Montecchio D, Gazzola G, Gallipoli A, Gianico A, Braguglia CM. Medium chain Fatty acids production from Food Waste via homolactic fermentation and lactate/ethanol elongation: Electron balance and thermodynamic assessment. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 177:289-297. [PMID: 38359509 DOI: 10.1016/j.wasman.2024.01.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/08/2024] [Accepted: 01/29/2024] [Indexed: 02/17/2024]
Abstract
This study explored the potential of Food Waste (FW) extract as a suitable substrate for Medium Chain Fatty Acids (MCFAs) production, in a single-phase reactor, where both fermentation and Chain Elongation (CE) processes occurred simultaneously. A continuous experiment was conducted with an Organic Loading Rate (OLR) = 20 gCOD L-1 d-1 and was fed in batch mode twice a week with pH = 6. In addition, four batch tests were performed, to assess the effects on the MCFAs production of caproate inhibition, hydrogen partial pressure (PH2) and different lactate/acetate ratios. Thermodynamics and electron flux were calculated to gain insights into the process pathways. Due to the presence of aminoacids, fermentation was mostly homolactic and both lactate and ethanol were produced as Electron Donors (EDs); the average MCFAs production efficiency was ∼ 12 %, although after 4 weeks the elongation process was halted, resulting in EDs accumulation. This occurred regardless of inoculum selection and the presence of caproate as a possible inhibitor, suggesting that EDs accumulation was due to the elongation process kinetics being slower than those of the fermentation step, thus calling for a longer Hydraulic Retention Time (HRT). It's worth noting that lactate was prevalently self-elongated to butyrate, whereas ethanol elongation only took place after lactate depletion, but was more efficient since it required other Electron Acceptors (EAs) such as butyrate, propionate or valerate. Moreover, the selected pH limited the acrylate pathway to a reasonable extent, whereas the high PH2 prevented both ethanol and lactate oxydation to acetate.
Collapse
Affiliation(s)
- Daniele Montecchio
- Istituto di Ricerca sulle Acque-CNR, Area della Ricerca RM1, 00015 Monterotondo, Roma, Italy.
| | - Giulio Gazzola
- Istituto di Ricerca sulle Acque-CNR, Area della Ricerca RM1, 00015 Monterotondo, Roma, Italy.
| | - Agata Gallipoli
- Istituto di Ricerca sulle Acque-CNR, Area della Ricerca RM1, 00015 Monterotondo, Roma, Italy.
| | - Andrea Gianico
- Istituto di Ricerca sulle Acque-CNR, Area della Ricerca RM1, 00015 Monterotondo, Roma, Italy.
| | - Camilla M Braguglia
- Istituto di Ricerca sulle Acque-CNR, Area della Ricerca RM1, 00015 Monterotondo, Roma, Italy.
| |
Collapse
|
7
|
Kim G, Yang H, Lee J, Cho KS. Comparative analysis of hydrogen production and bacterial communities in mesophilic and thermophilic consortia using multiple inoculum sources. CHEMOSPHERE 2024; 350:141144. [PMID: 38190944 DOI: 10.1016/j.chemosphere.2024.141144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/10/2024]
Abstract
This study investigates the hydrogen (H2) production performance and bacterial communities in mesophilic (37 °C) and thermophilic (50 °C) H2-producing consortia derived from different inoculum sources and utilizing food waste as a substrate. This study found notable variations in H2 production characteristics among these consortia. Among the mesophilic consortia (MC), the W-MC obtained with wetland (W) as the inoculum source exhibited the highest hydrogen production (3900 mL·L-1 and 117 mL·L-1·h-1), while among the thermophilic consortia (TC), the FP-TC obtained with forest puddle sediment (FP) as the inoculum source showed the highest performance (2112 mL·L-1 and 127 mL·L-1·h-1). This study reveals that the choice of inoculum source plays a crucial role in determining hydrogen production efficiency. Furthermore, the bacterial community analysis demonstrated varying microbial diversity and richness in different inoculum sources. Clostridium, a well-known H2-producing bacterium, was found in both mesophilic and thermophilic consortia and showed a positive correlation with H2 production. Other bacteria, such as Sporanaerobacter, Caproiciproducens, and Caldibacillus, also exhibited significant correlations with H2 production, suggesting their potential roles in the process. The study highlights the complex interactions between bacterial communities and hydrogen production performance, shedding light on the critical factors influencing this renewable energy source. Overall, this study contributes to our understanding of the microbial ecology and the factors affecting hydrogen production in different temperature conditions, which can have practical implications for optimizing biohydrogen production processes using organic waste substrates.
Collapse
Affiliation(s)
- Geunhee Kim
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea.
| | - Hyoju Yang
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jiho Lee
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Kyung-Suk Cho
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
8
|
Clough J, Schwab S, Mikac K. Gut Microbiome Profiling of the Endangered Southern Greater Glider ( Petauroides volans) after the 2019-2020 Australian Megafire. Animals (Basel) 2023; 13:3583. [PMID: 38003202 PMCID: PMC10668662 DOI: 10.3390/ani13223583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Studying the gut microbiome can provide valuable insights into animal health and inform the conservation management of threatened wildlife. Gut microbiota play important roles in regulating mammalian host physiology, including digestion, energy metabolism and immunity. Dysbiosis can impair such physiological processes and compromise host health, so it is essential that the gut microbiome be considered in conservation planning. The southern greater glider (Petauroides volans) is an endangered arboreal marsupial that faced widespread habitat fragmentation and population declines following the 2019-2020 Australian bushfire season. This study details baseline data on the gut microbiome of this species. The V3-V4 region of the 16S rRNA gene was amplified from scats collected from individuals inhabiting burnt and unburnt sites across southeastern Australia and sequenced to determine bacterial community composition. Southern greater glider gut microbiomes were characterised by high relative abundances of Firmicutes and Bacteroidota, which is consistent with that reported for other marsupial herbivores. Significant differences in gut microbial diversity and community structure were detected among individuals from different geographic locations. Certain microbiota and functional orthologues were also found to be significantly differentially abundant between locations. The role of wildfire in shaping southern greater glider gut microbiomes was shown, with some significant differences in the diversity and abundance of microbiota detected between burnt and unburnt sites. Overall, this study details the first data on greater glider (Petauroides) gut microbiomes, laying the foundation for future studies to further explore relationships between microbial community structure, environmental stressors and host health.
Collapse
Affiliation(s)
- Jordyn Clough
- School of Earth, Atmospheric and Life Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia;
| | - Sibylle Schwab
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Katarina Mikac
- School of Earth, Atmospheric and Life Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia;
| |
Collapse
|
9
|
Xi L, Wen X, Jia T, Han J, Qin X, Zhang Y, Wang Z. Comparative study of the gut microbiota in three captive Rhinopithecus species. BMC Genomics 2023; 24:398. [PMID: 37452294 PMCID: PMC10349479 DOI: 10.1186/s12864-023-09440-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Snub-nosed monkeys are highly endangered primates and their population continues to decline with the habitat fragmentation. Artificial feeding and breeding is an important auxiliary conservation strategy. Studies have shown that changes and imbalances in the gut microbiota often cause gastrointestinal problems in captive snub-nosed monkeys. Here, we compare the gut microbiota composition, diversity, and predicted metabolic function of three endangered species of snub-nosed monkeys (Rhinopithecus bieti, R. brelichi, and R. roxellana) under the same captive conditions to further our understanding of the microbiota of these endangered primates and inform captive conservation strategies. 16 S rRNA gene sequencing was performed on fecal samples from 15 individuals (R. bieti N = 5, R. brelichi N = 5, R. roxellana N = 5). RESULTS The results showed that the three Rhinopithecus species shared 24.70% of their amplicon sequence variants (ASVs), indicating that the composition of the gut microbiota varied among the three Rhinopithecus species. The phyla Firmicutes and Bacteroidetes represented 69.74% and 18.45% of the core microbiota. In particular, analysis of microbiota diversity and predicted metabolic function revealed a profound impact of host species on the gut microbiota. At the genus level, significant enrichment of cellulolytic genera including Rikenellaceae RC9 gut group, Ruminococcus, Christensenellaceae R7 group, UCG 004 from Erysipelatoclostridiaceae, and UCG 002 and UCG 005 from Oscillospiraceae, and carbohydrate metabolism including propionate and butyrate metabolic pathways in the gut of R. bieti indicated that R. bieti potentially has a stronger ability to use plant fibers as energy substances. Bacteroides, unclassified Muribaculaceae, Treponema, and unclassified Eubacterium coprostanoligenes group were significantly enriched in R. brelichi. Prevotella 9, unclassified Lachnospiraceae, and unclassified UCG 010 from Oscillospirales UCG 010 were significantly enriched in R. roxellana. Among the predicted secondary metabolic pathways, the glycan biosynthesis and metabolism had significantly higher relative abundance in the gut of R. brelichi and R. roxellana than in the gut of R. bieti. The above results suggest that different Rhinopithecus species may have different strategies for carbohydrate metabolism. The Principal coordinate analysis (PCoA) and Unweighted pair-group method with arithmetic mean (UPGMA) clustering tree revealed fewer differences between the gut microbiota of R. brelichi and R. roxellana. Correspondingly, no differences were detected in the relative abundances of functional genes between the two Rhinopithecus species. CONCLUSION Taken together, the study highlights that host species have an effect on the composition and function of the gut microbiota of snub-nosed monkeys. Therefore, the host species should be considered when developing nutritional strategies and investigating the effects of niche on the gut microbiota of snub-nosed monkeys.
Collapse
Affiliation(s)
- Li Xi
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
- Henan Engineering Research Center of Development and Application of Green Feed Additives, Shangqiu Normal University, Shangqiu, China
| | - Xiaohui Wen
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Ting Jia
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China.
| | - Jincheng Han
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China.
- Henan Engineering Research Center of Development and Application of Green Feed Additives, Shangqiu Normal University, Shangqiu, China.
| | - Xinxi Qin
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China.
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.
| | - Yanzhen Zhang
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | - Zihan Wang
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| |
Collapse
|