1
|
Ladetto MF, Gantner ME, Rodenak-Kladniew BE, Rodriguez S, Cuestas ML, Talevi A, Castro GR. Promising Prodiginins Biological Activities. Chem Biodivers 2025:e202402940. [PMID: 40244866 DOI: 10.1002/cbdv.202402940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 04/10/2025] [Accepted: 04/17/2025] [Indexed: 04/19/2025]
Abstract
Prodiginins are a large family of at least 34 pyrrolic compounds, including the well-studied red pigment prodigiosin. Prodiginins are produced by several microorganisms displaying broad biological activities, including antimicrobial, antiviral, antiparasitic, antiproliferative, and immunosuppressive activities. The present review aims to compile and analyze the main physicochemical and biological properties and mechanisms of action of prodiginins for microbial disease treatment, particularly SARS-CoV-2 disease and opportunistic infections related to COVID-19. The interaction of prodigiosin, as a model molecule, with cellular membranes, potential drug delivery devices, and toxicological studies, and in silico studies using molecular dynamics showed that the prodigiosin motif, which interacts with lipids, opens a new door for the potential therapeutic use of prodiginins.
Collapse
Affiliation(s)
- María F Ladetto
- Laboratorio de Nanobiomateriales, CINDEFI-Departamento de Química, Facultad de Ciencias Exactas, CONICET-UNLP (CCT La Plata), La Plata, Buenos Aires, Argentina
- Institute for Research in Microbiology and Medical Parasitology (IMPaM), University of Buenos Aires, Buenos Aires, Argentina
| | - Melisa E Gantner
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Buenos Aires, Argentina
| | - Boris E Rodenak-Kladniew
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CONICET-UNLP, CCT-La Plata, Facultad de Ciencias Médicas, La Plata, Argentina
| | - Santiago Rodriguez
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Buenos Aires, Argentina
| | - María L Cuestas
- Institute for Research in Microbiology and Medical Parasitology (IMPaM), University of Buenos Aires, Buenos Aires, Argentina
| | - Alan Talevi
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Buenos Aires, Argentina
| | - Guillermo R Castro
- Nanomedicine Research Unit (Nanomed), Center for Natural and Human Sciences, Federal University of ABC (UFABC), Santo Andre, Sao Paulo, Brazil
| |
Collapse
|
2
|
Wu Z, Xu K, Huang R, Wang X, Teng JLL, Yu X, Jin L, Li Q, Leung KCF, Wong HM, Li X. Cyborg microbe biohybrids with metal-organic coating layers: Strategies, functionalisation and potential applications. Mater Today Bio 2025; 31:101642. [PMID: 40161925 PMCID: PMC11950775 DOI: 10.1016/j.mtbio.2025.101642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/10/2025] [Accepted: 03/06/2025] [Indexed: 04/02/2025] Open
Abstract
The integration of living microbes, specifically bacteria and fungi, with metal-organic nanocoatings has led to the recent development of cyborg microbe biohybrids, which show excellent adaptability and functionality for a wide range of potential applications in biotechnology and medicine. This review discusses the strategies, functionalisation, and applications of these biohybrids, which are categorised into two types of coatings: metal-organic frameworks (MOFs) and metal-phenolic networks (MPNs). Key advances in their synthetic approaches via in-situ and pre-synthesised coatings are crucially addressed, and yet the methodology details and specific advantages are highlighted. Despite the notable advancements, there are various limitations and challenges, such as determination of the long-term viability and stability of the biohybrids, insufficient work on their theranostic applications and essentially scaling-up difficulties for industrial and clinical translation. The latest advancements in the biohybrids and related technology have established a critical foundation for enhancing innovative studies through the strong interdisciplinary teamwork.
Collapse
Affiliation(s)
- Zichen Wu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, PR China
| | - Ke Xu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, PR China
| | - Regina Huang
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, PR China
| | - Xinna Wang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, PR China
| | - Jade Lee-Lee Teng
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, PR China
| | - Xiaolin Yu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, PR China
| | - Lijian Jin
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, PR China
| | - Quanli Li
- Institute of Oral Science, Department of Stomatology, Longgang Otorhinolaryngology Hospital, No. 3004L Longgang Avenue, Shenzhen, PR China
- Key Lab of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Meishan Road, Hefei, PR China
| | - Ken Cham-Fai Leung
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, PR China
| | - Hai Ming Wong
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, PR China
| | - Xuan Li
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, PR China
| |
Collapse
|
3
|
Abou-Elnour FS, El-Habashy SE, Essawy MM, Abdallah OY. Codelivery of ivermectin and methyl dihydrojasmonate in nanostructured lipid carrier for synergistic antileukemia therapy. Int J Pharm 2024; 656:124086. [PMID: 38580074 DOI: 10.1016/j.ijpharm.2024.124086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Chronic myeloid leukemia is a life-threatening blood-cancer prevalent among children and adolescents. Research for innovative therapeutics combine drug-repurposing, phytotherapeutics and nanodrug-delivery. Ivermectin (Ivn) is a potent anthelmintic, repurposed for antileukemic-activity. However, Ivn exerts off-target toxicity. Methyl-dihydrojasmonate (MJ) is a phytochemical of known antileukemic potential. Herein, we developed for the first-time Ivn/MJ-coloaded nanostructured-lipid-carrier (Ivn@MJ-NLC) for leveraging the antileukemic-activity of the novel Ivn/MJ-combination while ameliorating possible adverse-effects. The developed Ivn@MJ-NLC possessed optimum-nanosize (97 ± 12.70 nm), PDI (0.33 ± 0.02), entrapment for Ivn (97.48 ± 1.48 %) and MJ (99.48 ± 0.57 %) and controlled-release of Ivn (83 % after 140 h) and MJ (80.98 ± 2.45 % after 48 h). In-vitro K562 studies verified Ivn@MJ-NLC prominent cytotoxicity (IC50 = 35.01 ± 2.23 µg/mL) with pronounced Ivn/MJ-synergism (combination-index = 0.59) at low-concentrations (5-10 µg/mL Ivn). Superior Ivn@MJ-NLC cytocompatibility was established on oral-epithelial-cells (OEC) with high OEC/K562 viability-ratio (1.49-1.85). The innovative Ivn@MJ-NLC enhanced K562-nuclear-fragmentation and afforded upregulation of caspase-3 and BAX (1.71 ± 0.07 and 1.45 ± 0.07-fold-increase, respectively) compared to control. Ex-vivo hemocompatibility and in-vivo-biocompatibility of parenteral-Ivn@MJ-NLC, compared to Ivn-solution, was verified via biochemical-blood analysis, histological and histomorphometric studies of liver and kidney tissues. Our findings highlight Ivn@MJ-NLC as an Ivn/MJ synergistic antileukemic platform, ameliorating possible adverse-effects.
Collapse
Affiliation(s)
- Fatma S Abou-Elnour
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Salma E El-Habashy
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| | - Marwa M Essawy
- Department of Oral Pathology, Faculty of Dentistry, Alexandria University, Alexandria, Egypt; Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
4
|
Mohamed WA, El-Nekhily NA, Mahmoud HE, Hussein AA, Sabra SA. Prodigiosin/celecoxib-loaded into zein/sodium caseinate nanoparticles as a potential therapy for triple negative breast cancer. Sci Rep 2024; 14:181. [PMID: 38168547 PMCID: PMC10761898 DOI: 10.1038/s41598-023-50531-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
Nowadays, breast cancer is considered one of the most upsetting malignancies among females. Encapsulation of celecoxib (CXB) and prodigiosin (PDG) into zein/sodium caseinate nanoparticles (NPs) produce homogenous and spherical nanoparticles with good encapsulation efficiencies (EE %) and bioavailability. In vitro cytotoxicity study conducted on human breast cancer MDA-MB-231 cell lines revealed that there was a significant decline in the IC50 for encapsulated drugs when compared to each drug alone or their free combination. In addition, results demonstrated that there is a synergism between CXB and PDG as their combination indices were 0.62251 and 0.15493, respectively. Moreover, results of scratch wound healing assay revealed enhanced antimigratory effect of free drugs and fabricated NPs in comparison to untreated cells. Furthermore, In vitro results manifested that formulated nanoparticles exhibited induction of apoptosis associated with reduced angiogenesis, proliferation, and inflammation. In conclusion, nanoencapsulation of multiple drugs into nanoparticles might be a promising approach to develop new therapies for the managing of triple negative breast cancer.
Collapse
Affiliation(s)
- Wafaa A Mohamed
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt
| | - Nefertiti A El-Nekhily
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt
| | - Hoda E Mahmoud
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt
| | - Ahmed A Hussein
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt
| | - Sally A Sabra
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt.
| |
Collapse
|