1
|
Yan X, Liu H, Zhang Z, Deng X, Lin M, Cai Z, Tang D, Wang H, Liu W, Zhao D. Ti-Based Metallic Biomaterials for Antitumor Applications. MATERIALS (BASEL, SWITZERLAND) 2025; 18:2262. [PMID: 40428998 PMCID: PMC12113515 DOI: 10.3390/ma18102262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 05/02/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025]
Abstract
Titanium (Ti)-based metallic biomaterials (MBs) are traditionally employed as mechanical supports and constraints in clinical practice, owing to their superb comprehensive mechanical properties, great corrosion resistance, and good biocompatibility. Recently, Ti-based MBs have emerged as promising candidates for antitumor applications. These developments focus on the functionalization of Ti-based MBs to inhibit tumor propagation and recurrence. This work systematically examines the antitumor approaches of Ti-based MBs and categorizes them into physical and chemical approaches. Physical strategies, such as the photothermal and photocatalytic techniques, are usually related to material-specific properties. Chemical approaches often employ controlled local drug delivery (LDD) systems. Ti-based LDD systems enable the targeted release of chemotherapeutics, metal ions, or immunomodulatory agents at tumor sites. This review highlights the efficacy of these surface-functionalized Ti-based MBs against diverse tumors. Additionally, the challenges and prospects of antitumor Ti-based MBs are also discussed.
Collapse
Affiliation(s)
- Xiang Yan
- School of Information and Intelligent Engineering, Zhejiang Wanli University, Ningbo 315100, China; (X.Y.); (H.W.)
| | - Hui Liu
- College of Biology, Hunan University, Changsha 410082, China; (H.L.); (Z.Z.); (X.D.); (M.L.); (Z.C.); (D.T.)
| | - Zhe Zhang
- College of Biology, Hunan University, Changsha 410082, China; (H.L.); (Z.Z.); (X.D.); (M.L.); (Z.C.); (D.T.)
| | - Xiang Deng
- College of Biology, Hunan University, Changsha 410082, China; (H.L.); (Z.Z.); (X.D.); (M.L.); (Z.C.); (D.T.)
| | - Manfeng Lin
- College of Biology, Hunan University, Changsha 410082, China; (H.L.); (Z.Z.); (X.D.); (M.L.); (Z.C.); (D.T.)
| | - Zongyuan Cai
- College of Biology, Hunan University, Changsha 410082, China; (H.L.); (Z.Z.); (X.D.); (M.L.); (Z.C.); (D.T.)
| | - Dongying Tang
- College of Biology, Hunan University, Changsha 410082, China; (H.L.); (Z.Z.); (X.D.); (M.L.); (Z.C.); (D.T.)
| | - Hang Wang
- School of Information and Intelligent Engineering, Zhejiang Wanli University, Ningbo 315100, China; (X.Y.); (H.W.)
| | - Wen Liu
- School of Information and Intelligent Engineering, Zhejiang Wanli University, Ningbo 315100, China; (X.Y.); (H.W.)
| | - Dapeng Zhao
- College of Biology, Hunan University, Changsha 410082, China; (H.L.); (Z.Z.); (X.D.); (M.L.); (Z.C.); (D.T.)
| |
Collapse
|
2
|
Li Y, Gao Z, Du Y, Han Y, Ren X, Wu D, Ma H, Ju H, Xia F, Wei Q, Wang F. Locked Nucleic Acid-Enhanced Entropy-Driven Amplifier Combined with Catalytic Hybridization Reaction-Based DNA Circuit for Dual Amplified Detection of Single Nucleotide Polymorphisms and Asymmetric Encryption of Gene Information. Anal Chem 2025; 97:8506-8515. [PMID: 40197003 DOI: 10.1021/acs.analchem.5c00529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Single-nucleotide polymorphisms (SNPs) play a pivotal role in investigations of disease-associated genes and in the genetic analysis of animal and plant varieties. Therefore, the detection of SNPs is essential for advancing biomedical diagnostics and therapeutics. Here, we report a locked nucleic acid (LNA)-enhanced dual signal amplification strategy for high-contrast detecting single-nucleotide polymorphisms (SNPs) in the KRAS_G12C gene. By integrating entropy-driven amplification with catalytic hybridization reaction, the proposed method achieves significant amplification of fluorescence and resonance Rayleigh scattering signals. The incorporation of LNA modification enhances the thermodynamic stability and reaction kinetics of the DNA computing circuit, resulting in superior sensitivity and specificity for SNPs detection. The method exhibits a low detection limit of 0.19 fM and a wide dynamic range from 1 fM to 0.1 nM for the KRAS_G12C gene. Compared to traditional DNA-based circuits, the LNA-modified system demonstrates enhanced discrimination of single-base mismatches and improved signal gain. Moreover, the proposed method was further demonstrated for its potential application in human serum samples. Impressively, this research not only presents a highly sensitive and selective platform for SNPs detection but also demonstrates its potential for molecular-level information encryption. The incorporation of LNA in dual signal amplification significantly elevates the intricacy and robustness of information encryption. Therefore, this study underscores the potential of DNA-based technologies to serve as a bridge between the era of biomedical research and the emerging Internet of things.
Collapse
Affiliation(s)
- Yanlei Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Zhongfeng Gao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Yu Du
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, P. R. China
| | - Yujie Han
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Dan Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Hongmin Ma
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Huangxian Ju
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210023, P. R. China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Fuan Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
3
|
Xiao J, Ge Z, Tan X, Liu Z, Zhang Y, Xiao S, Yi R, Hu Y, Hu W, Chu H, Chen J. Biodegradable Covalent Beta-Cyclodextrin Nanocages for Acidic and Reductive-Responsive Drug Delivery in Enhanced Tumor Therapy. Biotechnol J 2025; 20:e70006. [PMID: 40123422 DOI: 10.1002/biot.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/19/2025] [Accepted: 03/10/2025] [Indexed: 03/25/2025]
Abstract
Traditional beta-cyclodextrin (beta-CD) in biomedical applications faces challenges due to its inherent physical and biochemical limitations. One of the most effective strategies to enhance the properties of beta-CD for drug delivery is the synthesis of supramolecular polycyclodextrins. In this study, we designed a novel beta-CD nanocage-like structure for drug delivery, incorporating imine and disulfide bonds through Schiff base reactions. Aldehyde group-functionalized beta-CD units were used to construct the main backbone of the nanocage, forming dual-dynamic covalent bonds. The chemical structure of the beta-CD nanocage was confirmed using ¹H nuclear magnetic resonance (¹H NMR) and Fourier transform infrared spectroscopy (FTIR). Additionally, atomic force microscopy (AFM) and dynamic light scattering (DLS) revealed that varying amounts of beta-CD crosslinked with cystamine resulted in nanocages approximately 200 nm in size. In vitro drug release experiments demonstrated that doxorubicin (DOX)-loaded beta-CD nanocages exhibited accelerated DOX release in acidic and reductive environments compared to normal physiological conditions, owing to the pH-sensitive imine bond and the glutathione (GSH)-cleavable disulfide bond. The DOX-loaded beta-CD nanocages showed exceptional tumor-killing effects, particularly in acid/reduction-enhanced tumor cells. Both cellular fluorescence imaging and flow cytometry confirmed the potential of the beta-CD nanocages for acid/reduction-specific drug release. Consequently, this precision medicine model using imine/disulfide-linked beta-CD nanocage structures as acidity/reduction-sensitive drug carriers promises to improve oncotherapy through more targeted drug delivery and release, supporting individualized treatment approaches.
Collapse
Affiliation(s)
- Jingyi Xiao
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, People's Republic of China
| | - Zan Ge
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, People's Republic of China
| | - Xiaowei Tan
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, People's Republic of China
| | - Ziyi Liu
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, People's Republic of China
| | - Yafang Zhang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, People's Republic of China
| | - Shufen Xiao
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, People's Republic of China
| | - Rongyuan Yi
- Fourth Department of Gynecologic Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
| | - Ye Hu
- Nanjing Institute for Food and Drug Control, Nanjing, Jiangsu, People's Republic of China
| | - Wenyan Hu
- Nanjing Institute for Food and Drug Control, Nanjing, Jiangsu, People's Republic of China
| | - Hui Chu
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, People's Republic of China
| | - Jian Chen
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, People's Republic of China
| |
Collapse
|
4
|
Hu Y, Chen J, Hu W. Selective Cellular Uptake and Druggability Efficacy through Functionalized Chitosan-Conjugated Polyamidoamine (PAMAM) Dendrimers. SENSORS (BASEL, SWITZERLAND) 2024; 24:4853. [PMID: 39123900 PMCID: PMC11315009 DOI: 10.3390/s24154853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
Nanotechnology has ushered in significant advancements in drug design, revolutionizing the prevention, diagnosis, and treatment of various diseases. The strategic utilization of nanotechnology to enhance drug loading, delivery, and release has garnered increasing attention, leveraging the enhanced physical and chemical properties offered by these systems. Polyamidoamine (PAMAM) dendrimers have been pivotal in drug delivery, yet there is room for further enhancement. In this study, we conjugated PAMAM dendrimers with chitosan (CS) to augment cellular internalization in tumor cells. Specifically, doxorubicin (DOX) was initially loaded into PAMAM dendrimers to form DOX-loaded PAMAM (DOX@PAMAM) complexes via intermolecular forces. Subsequently, CS was linked onto the DOX-loaded PAMAM dendrimers to yield CS-conjugated PAMAM loaded with DOX (DOX@CS@PAMAM) through glutaraldehyde crosslinking via the Schiff base reaction. The resultant DOX@CS@PAMAM complexes were comprehensively characterized using Fourier-transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), and dynamic light scattering (DLS). Notably, while the drug release profile of DOX@CS@PAMAM in acidic environments was inferior to that of DOX@PAMAM, DOX@CS@PAMAM demonstrated effective acid-responsive drug release, with a cumulative release of 70% within 25 h attributed to the imine linkage. Most importantly, DOX@CS@PAMAM exhibited significant selective cellular internalization rates and antitumor efficacy compared to DOX@PAMAM, as validated through cell viability assays, fluorescence imaging, and flow cytometry analysis. In summary, DOX@CS@PAMAM demonstrated superior antitumor effects compared to unconjugated PAMAM dendrimers, thereby broadening the scope of dendrimer-based nanomedicines with enhanced therapeutic efficacy and promising applications in cancer therapy.
Collapse
Affiliation(s)
- Ye Hu
- Nanjing Institute for Food and Drug Control, Nanjing 211198, China
| | - Jian Chen
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Wenyan Hu
- Nanjing Institute for Food and Drug Control, Nanjing 211198, China
| |
Collapse
|
5
|
Zhang Y, Xu S, Luo M, Chen J, Wang L, Yang F, Ye J, Liu J, He B, Weng L, Li S, Zhang D. Hairpin-Empowered Invasive Reaction Combined with Catalytic Hairpin Assembly Cascade Amplification for the Specific Detection of Single-Nucleotide Polymorphisms. Anal Chem 2024; 96:10283-10293. [PMID: 38864304 DOI: 10.1021/acs.analchem.4c01049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Single-nucleotide polymorphism (SNP) is widely used in the study of disease-related genes and in the genetic study of animal and plant strains. Therefore, SNP detection is crucial for biomedical diagnosis and treatment as well as for molecular design breeding of animals and plants. In this regard, this article describes a novel technique for detecting SNP using flap endonuclease 1 (FEN 1) as a specific recognition element and catalytic hairpin assembly (CHA) cascade reaction as a signal amplification strategy. The mutant target (MT) was hybridized with a biotin-modified upstream probe and hairpin-type downstream probe (DP) to form a specific three-base overlapping structure. Then, FEN 1 was employed for three-base overlapping structure-specific recognition, namely, the precise SNP site identification and the 5' flap of DP dissociation. After dissociation, the hybridized probes were magnetically separated by a streptavidin-biotin complex. Especially, the ability to establish such a hairpin-type DP provided a powerful tool that could be used to hide the cut sequence (CS) and avoid false-positive signals. The cleaved CS initiated the CHA reaction and allowed superior fluorescence signal generation. Owing to the high specificity of FEN 1 for single base recognition, only the MT could be distinguished from the wild-type target and mismatched DNA. Owing to the dual signal amplification, as low as 0.36 fM MT and 1% mutation abundance from the mixtures could be detected, respectively. Furthermore, it could accurately identify SNPs from human cancer cells, as well as soybean leaf genome extracts. This strategy paves the way for the development of more precise and sensitive tools for diagnosing early onset diseases as well as molecular design breeding tools.
Collapse
Affiliation(s)
- Yunshan Zhang
- Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Laboratory, Hangzhou 311121, China
| | - Shijie Xu
- Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Laboratory, Hangzhou 311121, China
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Ma Luo
- Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Laboratory, Hangzhou 311121, China
| | - Jian Chen
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Lanyue Wang
- Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Laboratory, Hangzhou 311121, China
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Fang Yang
- Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Laboratory, Hangzhou 311121, China
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Jing Ye
- Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Laboratory, Hangzhou 311121, China
| | - Jichong Liu
- Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Laboratory, Hangzhou 311121, China
| | - Bingxiao He
- Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Laboratory, Hangzhou 311121, China
| | - Lin Weng
- Research Center for Intelligent Computing Platforms, Research Institute of Intelligent Computing, Zhejiang Laboratory, Hangzhou 311121, China
| | - Shuang Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Diming Zhang
- Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Laboratory, Hangzhou 311121, China
| |
Collapse
|
6
|
Wang L, Bu S, Xu S, Huang T, Yang F, Tan Q, Deng M, Xie W, Cai B, Chen J. Double base mismatches mediated catalytic hairpin assembly for enzyme-free single-base mutation detection: integrating signal recognition and amplification in one. Mikrochim Acta 2024; 191:334. [PMID: 38758362 DOI: 10.1007/s00604-024-06366-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/14/2024] [Indexed: 05/18/2024]
Abstract
Single nucleotide polymorphism (SNP) biosensors are emerging rapidly for their promising applications in human disease prevention diagnosis, treatment, and prognosis. However, it remains a bottleneck in equipping simple and stable biosensors with the traits of high sensitivity, non-enzyme, and low cost. Double base mismatches mediated chain displacement reactions have attracted fascinating advantages of tailorable thermodynamics stability, non-enzyme, and excellent assembly compliance to involvement in SNP identification. As the base mismatch position and amount in DNA sequence can be artificially adjusted, it provides plenty of selectivity and specificity for exploring perfect biosensors. Herein, a biosensor with double base mismatches mediated catalytic hairpin assembly (CHA) is designed via one base mismatch in the toehold domain and the other base mismatch in the stem sequence of hairpin 1 (H1) by triggering CHA reaction to achieve selective amplification of the mutation target (MT) and fluorescence resonance energy transfer (FRET) effect that is composed of Cy3 and Cy5 terminally attached H1 and hairpin 2 (H2). Depending on the rationally designed base mismatch position and toehold length, the fabricated biosensors show superior SNP detection performance, exhibiting a good linearity with high sensitivity of 6.6 fM detection limit and a broad detection abundance of 1%. The proposed biosensor can be used to detect the KRAS mutation gene in real samples and obtain good recoveries between 106 and 116.99%. Remarkably, these extendible designs of base mismatches can be used for more types of SNP detection, providing flexible adjustment based on base mismatch position and toehold length variations, especially for their thermodynamic model for DNA-strand displacement reactions.
Collapse
Affiliation(s)
- Lanyue Wang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Sisi Bu
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Shijie Xu
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Tuo Huang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Fang Yang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Qianglong Tan
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Minxin Deng
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Wenlin Xie
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China.
| | - Bobo Cai
- Zhejiang Hospital, Hangzhou, 310013, China.
| | - Jian Chen
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China.
| |
Collapse
|
7
|
Xu S, Chen J, Yang F, Yang Z, Xu J, Wang L, Bian L, Liu L, Zhao X, Zhang Y. A FEN 1-driven DNA walker-like reaction coupling with magnetic bead-based separation for specific SNP detection. Front Bioeng Biotechnol 2023; 11:1279473. [PMID: 38026850 PMCID: PMC10656677 DOI: 10.3389/fbioe.2023.1279473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/15/2023] [Indexed: 12/01/2023] Open
Abstract
Single-nucleotide polymorphism (SNP) plays a key role in the carcinogenesis of the human genome, and understanding the intrinsic relationship between individual genetic variations and carcinogenesis lies heavily in the establishment of a precise and sensitive SNP detection platform. Given this, a powerful and reliable SNP detection platform is proposed by a flap endonuclease 1 (FEN 1)-driven DNA walker-like reaction coupling with a magnetic bead (MB)-based separation. A carboxyfluorescein (FAM)-labeled downstream probe (DP) was decorated on a streptavidin magnetic bead (SMB). The target DNA, as a walker strand, was captured by hybridization with DP and an upstream probe (UP) to form a three-base overlapping structure and execute the walking function on the surface of SMB. FEN 1 was employed to specifically recognize the three-base overlapping structure and cut the 5'flap at the SNP site to report the walking event and signal amplification. Considering the fact that the fluorescence was labeled on the cleavage and uncleavage sequences of DP and the target DNA-triggered walking event was undistinguishable from the mixtures, magnetic separation came in handy for cleavage probe (CP) isolation and discrimination of the amplified signal from the background signal. In comparison with the conventional DNA walker reaction, this strategy was coupling with SMB-based separation, thus promising a powerful and reliable method for SNP detection and signal amplification.
Collapse
Affiliation(s)
- Shijie Xu
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, China
| | - Jian Chen
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, China
| | - Fang Yang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, China
| | - Zhihao Yang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, China
| | - Jianrong Xu
- School of Electronic Engineering, Nanjing Normal University, Taizhou College, Taizhou, China
| | - Lanyue Wang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, China
| | - Lina Bian
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, China
| | - Lihua Liu
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, China
| | - Xiaoyu Zhao
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, China
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Yunshan Zhang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, China
| |
Collapse
|
8
|
Hu X, Ke C, Zhong J, Chen Y, Dong J, Hao M, Chen Q, Ni J, Peng Z. Nano selenium-doped TiO 2 nanotube arrays on orthopedic implants for suppressing osteosarcoma growth. Front Bioeng Biotechnol 2023; 11:1252816. [PMID: 37731757 PMCID: PMC10508061 DOI: 10.3389/fbioe.2023.1252816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/18/2023] [Indexed: 09/22/2023] Open
Abstract
Osteosarcoma, the most common primary malignant bone tumor, is characterized by malignant cells producing osteoid or immature bone tissue. Most osteosarcoma patients require reconstructive surgery to restore the functional and structural integrity of the injured bone. Metal orthopedic implants are commonly used to restore the limb integrity in postoperative patients. However, conventional metal implants with a bioinert surface cannot inhibit the growth of any remaining cancer cells, resulting in a higher risk of cancer recurrence. Herein, we fabricate a selenium-doped TiO2 nanotube array (Se-doped TNA) film to modify the surface of medical pure titanium substrate, and evaluate the anti-tumor effect and biocompatibility of Se-doped TNA film. Moreover, we further explore the anti-tumor potential mechanism of Se-doped TNA film by studying the behaviors of human osteosarcoma cells in vitro. We provide a new pathway for achieving the anti-tumor function of orthopedic implants while keeping the biocompatibility, aiming to suppress the recurrence of osteosarcoma.
Collapse
Affiliation(s)
- Xiaodong Hu
- Affiliated Li Huili Hospital, Ningbo University, Ningbo, China
| | - Chunhai Ke
- Affiliated Li Huili Hospital, Ningbo University, Ningbo, China
| | - Jiaqi Zhong
- Affiliated Li Huili Hospital, Ningbo University, Ningbo, China
| | - Yujiong Chen
- Affiliated Li Huili Hospital, Ningbo University, Ningbo, China
| | - Jieyang Dong
- Affiliated Li Huili Hospital, Ningbo University, Ningbo, China
| | - Mingming Hao
- Affiliated Li Huili Hospital, Ningbo University, Ningbo, China
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, China
| | - Qi Chen
- Ningbo Regen Biotech, Co, Ltd, Ningbo, Zhejiang, China
| | - Jiahua Ni
- Ningbo Regen Biotech, Co, Ltd, Ningbo, Zhejiang, China
| | - Zhaoxiang Peng
- Affiliated Li Huili Hospital, Ningbo University, Ningbo, China
| |
Collapse
|