1
|
Tang Y, Feng S, Yao K, Cheung SW, Wang K, Zhou X, Xiang L. Exogenous electron generation techniques for biomedical applications: Bridging fundamentals and clinical practice. Biomaterials 2025; 317:123083. [PMID: 39798242 DOI: 10.1016/j.biomaterials.2025.123083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 12/14/2024] [Accepted: 01/01/2025] [Indexed: 01/15/2025]
Abstract
Endogenous bioelectrical signals are quite crucial in biological development, governing processes such as regeneration and disease progression. Exogenous stimulation, which mimics endogenous bioelectrical signals, has demonstrated significant potential to modulate complex biological processes. Consequently, increasing scientific efforts have focused on developing methods to generate exogenous electrons for biological applications, primarily relying on piezoelectric, acoustoelectric, optoelectronic, magnetoelectric, and thermoelectric principles. Given the expanding body of literature on this topic, a systematic and comprehensive review is essential to foster a deeper understanding and facilitate clinical applications of these techniques. This review synthesizes and compares these methods for generating exogenous electrical signals, their underlying principles (e.g., semiconductor deformation, photoexcitation, vibration and relaxation, and charge separation), biological mechanisms, potential clinical applications, and device designs, highlighting their advantages and limitations. By offering a comprehensive perspective on the critical role of exogenous electrons in biological systems, elucidating the principles of various electron-generation techniques, and exploring possible pathways for developing medical devices utilizing exogenous electrons, this review aims to advance the field and support therapeutic innovation.
Collapse
Affiliation(s)
- Yufei Tang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Shuqi Feng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Keyi Yao
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Sze Wing Cheung
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Kai Wang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Xuemei Zhou
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, China.
| | - Lin Xiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Andre V, Abdel-Mottaleb M, Shotbolt M, Chen S, Ramezini Z, Zhang E, Conlan S, Telisman O, Liang P, Bryant JM, Chomko R, Khizroev S. Foundational insights for theranostic applications of magnetoelectric nanoparticles. NANOSCALE HORIZONS 2025; 10:699-718. [PMID: 39898755 PMCID: PMC11789716 DOI: 10.1039/d4nh00560k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/22/2025] [Indexed: 02/04/2025]
Abstract
Reviewing emerging biomedical applications of MagnetoElectric NanoParticles (MENPs), this paper presents basic physics considerations to help understand the possibility of future theranostic applications. Currently emerging applications include wireless non-surgical neural modulation and recording, functional brain mapping, high-specificity cell electroporation for targeted cancer therapies, targeted drug delivery, early screening and diagnostics, and others. Using an ab initio analysis, each application is discussed from the perspective of its fundamental limitations. Furthermore, the review identifies the most eminent challenges and offers potential engineering solutions on the pathway to implement each application and combine the therapeutic and diagnostic capabilities of the nanoparticles.
Collapse
Affiliation(s)
- Victoria Andre
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
| | | | - Max Shotbolt
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
| | - Shawnus Chen
- Department of Chemical, Environmental and Materials Engineering, University of Miami, Coral Gables, FL, USA
| | - Zeinab Ramezini
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, FL, USA.
| | - Elric Zhang
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, FL, USA.
| | - Skye Conlan
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
| | - Ozzie Telisman
- Department of Chemistry, University of Miami, Coral Gables, FL, USA
| | | | - John M Bryant
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Roman Chomko
- Department of Electrical and Computer Engineering, University of California, Riverside, CA, USA
| | - Sakhrat Khizroev
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, FL, USA.
- The Miami Project to Cure Paralysis, Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL, USA
| |
Collapse
|
3
|
Lenzuni M, Giannoni P, Chiaramello E, Fiocchi S, Suarato G, Ravazzani P, Marrella A. Multiphysics analysis of the dual role of magnetoelectric nanoparticles in a microvascular environment: from magnetic targeting to electrical activation. Front Bioeng Biotechnol 2025; 12:1467328. [PMID: 39840138 PMCID: PMC11747017 DOI: 10.3389/fbioe.2024.1467328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 12/19/2024] [Indexed: 01/23/2025] Open
Abstract
Minimally invasive medical treatments for peripheral nerve stimulation are critically needed to minimize surgical risks, enhance the precision of therapeutic interventions, and reduce patient recovery time. Magnetoelectric nanoparticles (MENPs), known for their unique ability to respond to both magnetic and electric fields, offer promising potential for precision medicine due to their dual tunable functionality. In this study a multi-physics modeling of the MENPs was performed, assessing their capability to be targeted through external magnetic fields and become electrically activated. In particular, by integrating electromagnetic, fluid dynamics, and biological models, the efficacy of MENPs as wireless nano-tools to trigger electrical stimulation in the peripheral Nervous system present within the dermal microenvironment was assessed. The simulations replicate the blood venous capillary network, accounting for the complex interactions between MENPs, blood flow, and vessel walls. Results demonstrate the precise steering of MENPs (>95%) toward target sites under a low-intensity external magnetic field (78 mT) even with a low susceptibility value (0.45). Furthermore, the extravasation and electrical activation of MENPs within the dermal tissue are analyzed, revealing the generation of high-induced electric fields in the surrounding area when MENPs are subjected to external magnetic fields. Overall, these findings predict that MENPs can be targeted in a tissue site when intravenously administrated, dragged through the microvessels of the venous system, and activated by generating high electric fields for the stimulation of the peripheral nervous system.
Collapse
Affiliation(s)
- Martina Lenzuni
- Institute of Electronics, Computer and Telecommunication Engineering (IEIIT), National Research Council (CNR), Milan, Italy
| | - Paolo Giannoni
- Department of Experimental Medicine, Biology Section, University of Genova, Genoa, Italy
| | - Emma Chiaramello
- Institute of Electronics, Computer and Telecommunication Engineering (IEIIT), National Research Council (CNR), Milan, Italy
| | - Serena Fiocchi
- Institute of Electronics, Computer and Telecommunication Engineering (IEIIT), National Research Council (CNR), Milan, Italy
| | - Giulia Suarato
- Institute of Electronics, Computer and Telecommunication Engineering (IEIIT), National Research Council (CNR), Milan, Italy
| | - Paolo Ravazzani
- Institute of Electronics, Computer and Telecommunication Engineering (IEIIT), National Research Council (CNR), Milan, Italy
| | - Alessandra Marrella
- Institute of Electronics, Computer and Telecommunication Engineering (IEIIT), National Research Council (CNR), Milan, Italy
| |
Collapse
|
4
|
Marrella A, Giannoni P, Lenzuni M, Suarato G, Fiocchi S, Chiaramello E, Ravazzani P. Temperature-Dependent Cytokine Neutralization Induced by Magnetoelectric Nanoparticles: An In Silico Study. Int J Mol Sci 2024; 25:13591. [PMID: 39769353 PMCID: PMC11678122 DOI: 10.3390/ijms252413591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Inflammatory cytokines cooperate to maintain normal immune homeostasis, performing both a protective and a pro-inflammatory action in different body districts. However, their excessive persistence or deregulated expression may degenerate into tissue chronic inflammatory status. Advanced therapies should be designed to deploy selective cytokine neutralizers in the affected tissues. Magnetoelectric nanoparticles (MENPs) possess unexploited potentialities, conjugating their ferromagnetic nature, which enables confinement in a specific tissue by directed positioning when subjected to low-intensity magnetic fields, with the capability to generate high electric fields with elevated spatial resolution when subjected to higher magnetic fields. This work proposes to exploit the extremely localized heat generated by Joule's effect around MENPs under an external magnetic field to denature a harmful cytokine in a hypothetical tissue site. An interdisciplinary and multiphysics in silico study was conducted to provide comprehensive modeling of the temperature distribution generated by MENPs decorated with a membrane-derived microvesicle (MV) coating designed to allocate a specific antibody to bind a target cytokine. A damage model was also implemented to provide an estimation of the influence of several design parameters on the cytokine denaturation efficacy, with the final goal of guiding the future development of effective MENPs-based therapeutic applications and strategies.
Collapse
Affiliation(s)
- Alessandra Marrella
- Institute of Electronics, Computer and Telecommunication Engineering (IEIIT), National Research Council of Italy (CNR), 20133 Milan, Italy; (M.L.); (G.S.); (S.F.); (E.C.); (P.R.)
| | - Paolo Giannoni
- Department of Experimental Medicine, Biology Section, University of Genoa, 16132 Genoa, Italy;
| | - Martina Lenzuni
- Institute of Electronics, Computer and Telecommunication Engineering (IEIIT), National Research Council of Italy (CNR), 20133 Milan, Italy; (M.L.); (G.S.); (S.F.); (E.C.); (P.R.)
| | - Giulia Suarato
- Institute of Electronics, Computer and Telecommunication Engineering (IEIIT), National Research Council of Italy (CNR), 20133 Milan, Italy; (M.L.); (G.S.); (S.F.); (E.C.); (P.R.)
| | - Serena Fiocchi
- Institute of Electronics, Computer and Telecommunication Engineering (IEIIT), National Research Council of Italy (CNR), 20133 Milan, Italy; (M.L.); (G.S.); (S.F.); (E.C.); (P.R.)
| | - Emma Chiaramello
- Institute of Electronics, Computer and Telecommunication Engineering (IEIIT), National Research Council of Italy (CNR), 20133 Milan, Italy; (M.L.); (G.S.); (S.F.); (E.C.); (P.R.)
| | - Paolo Ravazzani
- Institute of Electronics, Computer and Telecommunication Engineering (IEIIT), National Research Council of Italy (CNR), 20133 Milan, Italy; (M.L.); (G.S.); (S.F.); (E.C.); (P.R.)
| |
Collapse
|
5
|
Zhang E, Shotbolt M, Chang CY, Scott-Vandeusen A, Chen S, Liang P, Radu D, Khizroev S. Controlling action potentials with magnetoelectric nanoparticles. Brain Stimul 2024; 17:1005-1017. [PMID: 39209064 DOI: 10.1016/j.brs.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/06/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Non-invasive or minutely invasive and wireless brain stimulation that can target any region of the brain is an open problem in engineering and neuroscience with serious implications for the treatment of numerous neurological diseases. Despite significant recent progress in advancing new methods of neuromodulation, none has successfully replicated the efficacy of traditional wired stimulation and improved on its downsides without introducing new complications. Due to the capability to convert magnetic fields into local electric fields, MagnetoElectric NanoParticle (MENP) neuromodulation is a recently proposed framework based on new materials that can locally sensitize neurons to specific, low-strength alternating current (AC) magnetic fields (50Hz 1.7 kOe field). However, the current research into this neuromodulation concept is at a very early stage, and the theoretically feasible game-changing advantages remain to be proven experimentally. To break this stalemate phase, this study leveraged understanding of the non-linear properties of MENPs and the nanoparticles' field interaction with the cellular microenvironment. Particularly, the applied magnetic field's strength and frequency were tailored to the M - H hysteresis loop of the nanoparticles. Furthermore, rectangular prisms instead of the more traditional "spherical" nanoparticle shapes were used to: (i) maximize the magnetoelectric effect and (ii) improve the nanoparticle-cell-membrane surface interface. Neuromodulation performance was evaluated in a series of exploratory in vitro experiments on 2446 rat hippocampus neurons. Linear mixed effect models were used to ensure the independence of samples by accounting for fixed adjacency effects in synchronized firing. Neural activity was measured over repeated 4-min segments, containing 90 s of baseline measurements, 90 s of stimulation measurements, and 60 s of post stimulation measurements. 87.5 % of stimulation attempts produced statistically significant (P < 0.05) changes in neural activity, with 58.3 % producing large changes (P < 0.01). In negative controls using either zero or 1.7 kOe-strength field without nanoparticles, no experiments produced significant changes in neural activity (P > 0.05 and P > 0.15 respectively). Furthermore, an exploratory analysis of a direct current (DC) magnetic field indicated that the DC field could be used with MENPs to inhibit neuron activity (P < 0.01). These experiments demonstrated the potential for magnetoelectric neuromodulation to offer a near one-to-one functionality match with conventional electrode stimulation without requiring surgical intervention or genetic modification to achieve success, instead relying on physical properties of these nanoparticles as "On/Off" control mechanisms. ONE-SENTENCE SUMMARY: This in vitro neural cell culture study explores how to exploit the non-linear and anisotropic properties of magnetoelectric nanoparticles for wireless neuromodulation, the importance of magnetic field strength and frequency matching for optimization, and demonstrates, for the first time, that magnetoelectric neuromodulation can inhibit neural responses.
Collapse
Affiliation(s)
- Elric Zhang
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, FL, USA
| | - Max Shotbolt
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
| | - Chen-Yu Chang
- Department of Mechanical and Materials Engineering, Florida International University, Miami, FL, USA
| | | | - Shawnus Chen
- Department of Chemical, Environmental and Materials Engineering, Coral Gables, FL, University of Miami, USA
| | | | - Daniela Radu
- Department of Mechanical and Materials Engineering, Florida International University, Miami, FL, USA
| | - Sakhrat Khizroev
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, FL, USA; The Miami Project to Cure Paralysis, Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
6
|
Ramezani Z, André V, Khizroev S. Modeling the effect of magnetoelectric nanoparticles on neuronal electrical activity: An analog circuit approach. Biointerphases 2024; 19:031001. [PMID: 38738941 DOI: 10.1116/5.0199163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/22/2024] [Indexed: 05/14/2024] Open
Abstract
This paper introduces a physical neuron model that incorporates magnetoelectric nanoparticles (MENPs) as an essential electrical circuit component to wirelessly control local neural activity. Availability of such a model is important as MENPs, due to their magnetoelectric effect, can wirelessly and noninvasively modulate neural activity, which, in turn, has implications for both finding cures for neurological diseases and creating a wireless noninvasive high-resolution brain-machine interface. When placed on a neuronal membrane, MENPs act as magnetic-field-controlled finite-size electric dipoles that generate local electric fields across the membrane in response to magnetic fields, thus allowing to controllably activate local ion channels and locally initiate an action potential. Herein, the neuronal electrical characteristic description is based on ion channel activation and inhibition mechanisms. A MENP-based memristive Hodgkin-Huxley circuit model is extracted by combining the Hodgkin-Huxley model and an equivalent circuit model for a single MENP. In this model, each MENP becomes an integral part of the neuron, thus enabling wireless local control of the neuron's electric circuit itself. Furthermore, the model is expanded to include multiple MENPs to describe collective effects in neural systems.
Collapse
Affiliation(s)
- Zeinab Ramezani
- Department of Electrical and Computer Engineering, College of Engineering, University of Miami, Miami, Florida 33146
| | - Victoria André
- Department of Biomedical Engineering, College of Engineering, University of Miami, Miami, Florida 33146
| | - Sakhrat Khizroev
- Department of Electrical and Computer Engineering, College of Engineering, University of Miami, Miami, Florida 33146
| |
Collapse
|
7
|
Miziev S, Pawlak WA, Howard N. Comparative analysis of energy transfer mechanisms for neural implants. Front Neurosci 2024; 17:1320441. [PMID: 38292898 PMCID: PMC10825050 DOI: 10.3389/fnins.2023.1320441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/19/2023] [Indexed: 02/01/2024] Open
Abstract
As neural implant technologies advance rapidly, a nuanced understanding of their powering mechanisms becomes indispensable, especially given the long-term biocompatibility risks like oxidative stress and inflammation, which can be aggravated by recurrent surgeries, including battery replacements. This review delves into a comprehensive analysis, starting with biocompatibility considerations for both energy storage units and transfer methods. The review focuses on four main mechanisms for powering neural implants: Electromagnetic, Acoustic, Optical, and Direct Connection to the Body. Among these, Electromagnetic Methods include techniques such as Near-Field Communication (RF). Acoustic methods using high-frequency ultrasound offer advantages in power transmission efficiency and multi-node interrogation capabilities. Optical methods, although still in early development, show promising energy transmission efficiencies using Near-Infrared (NIR) light while avoiding electromagnetic interference. Direct connections, while efficient, pose substantial safety risks, including infection and micromotion disturbances within neural tissue. The review employs key metrics such as specific absorption rate (SAR) and energy transfer efficiency for a nuanced evaluation of these methods. It also discusses recent innovations like the Sectored-Multi Ring Ultrasonic Transducer (S-MRUT), Stentrode, and Neural Dust. Ultimately, this review aims to help researchers, clinicians, and engineers better understand the challenges of and potentially create new solutions for powering neural implants.
Collapse
|