1
|
Welz R, Ramachandran D, Schröder-Heurich B, Richter K, Geffers R, von Kaisenberg CS, Dörk T, von Versen-Höynck F. Alternative splicing of CADM1 is associated with endothelial progenitor cell dysfunction in preeclampsia. Physiol Genomics 2025; 57:217-226. [PMID: 39928918 DOI: 10.1152/physiolgenomics.00006.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/11/2024] [Accepted: 02/05/2025] [Indexed: 02/12/2025] Open
Abstract
Preeclampsia is a pregnancy-specific hypertensive disorder and is associated with an increased postpartum risk of cardiovascular morbidity for both women and their offspring. Previous studies have indicated that cord blood endothelial colony-forming cells (ECFCs) are dysfunctional in preeclampsia. The specific mechanisms are not yet fully understood, but dysregulation of alternative splicing has been proposed as one of the pathogenic pathways. To identify specific targets of alternative splicing in fetal ECFCs, we performed transcriptome-wide differential splicing analyses between cord blood ECFCs from preeclamptic (n = 16) and normal pregnancies (n = 13). Selected splicing events were validated using fragment length analysis and Sanger sequencing. In silico transcriptome-wide differential splicing analysis identified a significantly increased abundance of the CADM1 isoform ENST00000542447 in the preeclamptic cohort (P = 0.002), which was confirmed by wet-lab validation. The deleted exon 8 harbors glycosylation sites known to mediate cell-cell adhesion. To investigate the functional impact of alternative splice variants, we induced an in vitro splice switch using antisense morpholino treatment and then monitored cellular effects using migration and angiogenesis assays in ECFCs from six normal pregnancies. The CADM1 exon 8 skipping converted the normal ECFCs to a preeclampsia-like state characterized by a decreased migration ability (PANOVA = 0.005) and decreased tubule length (PANOVA = 0.02). We propose aberrant splicing of CADM1 and the resulting changes in the adherence properties of ECFCs as a potential contributor to cardiovascular sequelae in the offspring of preeclamptic pregnancies.NEW & NOTEWORTHY We investigated differential splicing between normal and preeclamptic pregnancies in endothelial colony-forming cells (ECFCs) from cord blood. Transcriptome-wide analysis identified exon 8 skipping of CADM1 mRNA to be upregulated in ECFCs from women with preeclampsia. In vitro splice switching studies indicated that induction of this isoform decreases the cell migration and tubule formation abilities of fetal ECFCs. Our findings link a specific splice isoform of CADM1 to preeclampsia, with potential implications for vascular health in the offspring.
Collapse
Affiliation(s)
- Ricarda Welz
- Gynaecology Research Unit, Department of Gynaecology and Obstetrics, Hannover Medical School, Hannover, Germany
| | - Dhanya Ramachandran
- Gynaecology Research Unit, Department of Gynaecology and Obstetrics, Hannover Medical School, Hannover, Germany
| | - Bianca Schröder-Heurich
- Gynaecology Research Unit, Department of Gynaecology and Obstetrics, Hannover Medical School, Hannover, Germany
| | - Katja Richter
- Gynaecology Research Unit, Department of Gynaecology and Obstetrics, Hannover Medical School, Hannover, Germany
| | - Robert Geffers
- Genome Analytics, Helmholtz Center for Infectious Diseases (HZI), Braunschweig, Germany
| | - Constantin S von Kaisenberg
- Division of Reproductive Medicine and Gynaecologic Endocrinology, Department of Gynaecology and Obstetrics, Hannover Medical School, Hannover, Germany
| | - Thilo Dörk
- Gynaecology Research Unit, Department of Gynaecology and Obstetrics, Hannover Medical School, Hannover, Germany
| | - Frauke von Versen-Höynck
- Gynaecology Research Unit, Department of Gynaecology and Obstetrics, Hannover Medical School, Hannover, Germany
- Division of Reproductive Medicine and Gynaecologic Endocrinology, Department of Gynaecology and Obstetrics, Hannover Medical School, Hannover, Germany
| |
Collapse
|
2
|
Sheng Y, Liu J, Zheng S. Identification of distinct gene co-expression modules and specific hub genes in skin lesions of atopic dermatitis and psoriasis by WGCNA. FEBS Open Bio 2023; 13:1887-1894. [PMID: 37548115 PMCID: PMC10549218 DOI: 10.1002/2211-5463.13686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/04/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023] Open
Abstract
Atopic dermatitis (AD) and psoriasis are among the most common chronic inflammatory skin diseases. Although AD and psoriasis are distinguished using clinical criteria, the lesions of these two diseases are sometimes highly similar, making diagnosis difficult. In addition, the mechanisms underlying these two diseases are not fully clear. Here, we aimed to identify potential genes and regulatory mechanisms in AD and psoriasis patients to aid in the diagnosis and treatment of AD and psoriasis. The GSE121212 dataset was obtained from the NCBI Gene Expression Omnibus database and weighted gene co-expression network analysis (WGCNA) was applied. The functions of genes in modules of interest were determined using Gene Ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes analysis with the ggplot2 package of r. The hub genes were obtained using the Search Tool for the Retrieval of Interacting Genes database and then visualized using cytoscape. The MEgreen and MEbrown modules were identified to associate with AD and psoriasis, respectively, and the biological functions and pathways of genes in clinically significant modules were detected and analyzed. Hub genes in these two modules and details on potential protein interactions were also revealed. The genes and modules identified by WGCNA might contribute to our understanding of the molecular mechanisms of AD and psoriasis and aid in their diagnosis and treatment.
Collapse
Affiliation(s)
- Yu Sheng
- Department of DermatologyThe First Affiliated Hospital of Harbin Medical UniversityChina
| | - Jing Liu
- Department of DermatologyThe First Affiliated Hospital of Harbin Medical UniversityChina
| | - Shuyun Zheng
- Department of DermatologyThe First Affiliated Hospital of Harbin Medical UniversityChina
| |
Collapse
|
3
|
Zhou X, Xiao B, Zeng J, Zhou L, Wang X, Zhao S, Li X, Zhang H, Su Y, Zhao Z, Li X. Identification of Cofilin‐1 as a novel biomarker of atopic dermatitis using
iTRAQ
quantitative proteomics. J Clin Lab Anal 2022; 36:e24751. [DOI: 10.1002/jcla.24751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022] Open
Affiliation(s)
- Xiaotao Zhou
- Department of Immunology, School of Basic Medical Sciences Xinjiang Medical University Urumqi Xinjiang China
| | - Bo Xiao
- Department of Immunology, School of Basic Medical Sciences Tianjin Medical University Tianjin China
| | - Jiajia Zeng
- Department of Immunology, School of Basic Medical Sciences Tianjin Medical University Tianjin China
| | - Liying Zhou
- Research and Development Center Beijing Tide Pharmaceutical Co., Ltd Beijing China
| | - Xiaodong Wang
- Department of Dermatology First Affiliated Hospital of Xinjiang Medical University Urumqi Xinjiang China
| | - Shangqi Zhao
- Department of Immunology, School of Basic Medical Sciences Xinjiang Medical University Urumqi Xinjiang China
| | - Xiaobo Li
- Department of Immunology, School of Basic Medical Sciences Tianjin Medical University Tianjin China
| | - Huiqiu Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences Tianjin Normal University Tianjin China
| | - Yanjun Su
- Department of Lung Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer Tianjin Medical University Cancer Institute and Hospital Tianjin China
| | - Zhenyu Zhao
- Departments of Pharmacy, NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases Tianjin Medical University Chu Hsien‐I Memorial Hospital Tianjin China
| | - Xichuan Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences Tianjin Normal University Tianjin China
| |
Collapse
|
4
|
CADM1 enhances intestinal barrier function in a rat model of mild inflammatory bowel disease by inhibiting the STAT3 signaling pathway. J Bioenerg Biomembr 2020; 52:343-354. [PMID: 32929607 DOI: 10.1007/s10863-020-09850-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022]
Abstract
Cell adhesion molecule 1 (CADM1) is frequently silenced in lung, prostate, liver, stomach, pancreatic and breast carcinomas and other forms of human carcinomas. However, it is unclear regarding the role of CADM1 in irritable bowel syndrome with diarrhoea (IBS-D) that is the most common gastrointestinal diagnosis and may contribute to impaired intestinal barrier function. The aim of the present study is to explore the potential mechanism of CADM1 in regulating intestinal barrier function in IBS-D. A rat model with IBS-D induced by the combination method of mother-infant separation, acetic acid and restraint stress was initially established. The defecation frequency, faecal water content (FWC), total intestinal permeability, sIgA, endotoxin, D-lactic acid and diamine oxidase (DAO) were then measured. Next, positive expression of CADM1 protein was detected in distal colonic tissue of rats by immunohistochemistry. The expression of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in distal colonic mucosa, CADM1, Janus kinase 1 (JAK1), STAT3, p-JAK1, p-STAT3, Claudin-1and Claudin-2 were evaluated using ELISA, RT-qPCR and western blot analysis. IBS-D rats exhibited low CADM1 expression and activated STAT3 signaling pathway. Overexpression of CADM1 in rats was shown to increase Claudin-1 expression, while decreasing expression of STAT3, Claudin-2, TNF-α and IL-6. In addition, silencing of CADM1 or inhibition of the STAT3 signaling pathway was demonstrated to improve the intestinal barrier function. Our study provides evidence that CADM1 can potentially improve intestinal barrier function in rats with IBS-D by inhibiting the STAT3 signaling pathway.
Collapse
|
5
|
Inhibitory Effects of Helianthus tuberosus Ethanol Extract on Dermatophagoides farina body-induced Atopic Dermatitis Mouse Model and Human Keratinocytes. Nutrients 2018; 10:nu10111657. [PMID: 30400334 PMCID: PMC6265995 DOI: 10.3390/nu10111657] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/26/2018] [Accepted: 11/01/2018] [Indexed: 12/13/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by complex symptoms. To treat AD without adverse effects, alternative therapeutic agents are required. The tubers of Helianthus tuberosus L. (Jerusalem artichoke) have been used in folk remedies for diabetes and rheumatism. However, its effect on AD development remains unknown. Therefore, this study examined the inhibitory effect of H. tuberosus (HT) on AD skin symptoms using an NC/Nga mouse model and HaCaT keratinocytes. The effect of HT and associated molecular mechanisms were evaluated in Dermatophagoides farina body (Dfb)-induced AD mice and tumor necrosis factor (TNF)-α/interferon (IFN)-γ-stimulated HaCaT keratinocytes by ELISA, western blot, and histological analysis. Topical HT administration attenuated AD skin symptoms in Dfb-induced AD mice, with a significant reduction in the dermatitis score and production of inflammatory mediators. HT also decreased epidermal thickness and mast cell infiltration. Moreover, HT restored filaggrin expression and inhibited adhesion molecules in the mice. These effects were confirmed in vitro. Furthermore, HT suppressed the activation of NF-κB, Akt, and mitogen-activated protein kinase (MAPK) signaling pathways induced by TNF-α/IFN-γ. These results suggest that HT is a potential therapeutic agent or supplement for skin allergic inflammatory diseases such as AD.
Collapse
|
6
|
Kato T, Hagiyama M, Takashima Y, Yoneshige A, Ito A. Cell adhesion molecule-1 shedding induces apoptosis of renal epithelial cells and exacerbates human nephropathies. Am J Physiol Renal Physiol 2018; 314:F388-F398. [PMID: 29070574 PMCID: PMC6048447 DOI: 10.1152/ajprenal.00385.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 12/15/2022] Open
Abstract
Chronic kidney disease (CKD) is an important problem throughout the world, associated with the increase of blood urea nitrogen (BUN) and serum creatinine (sCre) and with renal tubular injuries. It is crucial to elucidate the molecular mechanisms of renal injuries to identify the new therapeutics and early diagnostic methods. We focused on cell adhesion molecule-1 (CADM1) protein. CADM1, its isoform SP4, is expressed in the epithelial cells of various tissues, including renal distal tubules, localized on the lateral cell membrane, mediates cell-cell adhesion via trans-homophilic binding, and interacts with various proteins. We previously reported that its expression was downregulated by post-proteolytic cleavage (α- and β-shedding) in pulmonary diseases. To investigate whether CADM1 α-shedding occurs in human nephropathies, we performed Western blotting and immunohistochemical analysis of specimens with arterionephrosclerosis (AS) and diabetic nephropathy (DN) from autopsied kidneys. CADM1 α-shedding was induced in AS and DN kidneys and derived from the decrease in full-length CADM1 (FL-CADM1) and increase of the COOH-terminal fragment (α-CTF). In particular, the reduced FL-CADM1 level was correlated with tubular and tubulointerstitial injuries and the increases in BUN and sCre levels. Apoptosis of renal tubular epithelial cells (TECs) was promoted in both nephropathies, and it was significantly correlated with the decrease in the FL-CADM1. Furthermore, FL-CADM1 knockdown by small interfering RNA downregulated anti-apoptotic Bcl-2 protein and promoted apoptosis of cultured renal TECs. The present study suggests that the reduction of FL-CADM1 leads to renal TEC apoptosis and could exacerbate renal tubular and tubulointerstitial injuries, which contribute to the development of CKD.
Collapse
Affiliation(s)
- Takashi Kato
- Department of Pathology, Faculty of Medicine, Kindai University , Osaka , Japan
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health , Bethesda, Maryland
| | - Man Hagiyama
- Department of Pathology, Faculty of Medicine, Kindai University , Osaka , Japan
| | - Yasutoshi Takashima
- Department of Pathology, Faculty of Medicine, Kindai University , Osaka , Japan
| | - Azusa Yoneshige
- Department of Pathology, Faculty of Medicine, Kindai University , Osaka , Japan
| | - Akihiko Ito
- Department of Pathology, Faculty of Medicine, Kindai University , Osaka , Japan
| |
Collapse
|
7
|
Komohara Y, Ma C, Yano H, Pan C, Horlad H, Saito Y, Ohnishi K, Fujiwara Y, Okuno Y, Nosaka K, Shimosaki S, Morishita K, Matsuoka M, Wakayama T, Takeya M. Cell adhesion molecule-1 (CADM1) expressed on adult T-cell leukemia/lymphoma cells is not involved in the interaction with macrophages. J Clin Exp Hematop 2017; 57:15-20. [PMID: 28420814 DOI: 10.3960/jslrt.17003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cell adhesion molecule 1 (CADM1) is a cell adhesion molecule that is expressed in brain, liver, lung, testis, and some kinds of cancer cells including adult T-cell leukemia/lymphoma (ATLL). Recent studies have indicated the involvement of CADM1 in cell-cell contact between cytotoxic T-lymphocytes and virus infected cells. We previously reported that cell-cell interaction between lymphoma cells and macrophages induces lymphoma cell proliferation. In the present study, we investigated whether CADM1 is associated with cell-cell interaction between several human lymphoma cell lines and macrophages.CADM1 expression was observed in the ATLL cell lines, ATN-1, ATL-T, and ATL-35T, and in the B cell lymphoma cell lines, TL-1, DAUDI, and SLVL, using western blotting. Significant cell-cell interaction between macrophages and ATN-1, ATL-T, ATL-35T and MT-2, DAUDI, and SLVL cells, as assessed by induction of cell proliferation, was observed. Immunohistochemical analysis of human biopsy samples indicated CADM1 expression in 10 of 14 ATLL cases; however, no case of follicular lymphoma or diffuse large B-cell lymphoma was positive for CADM1. Finally, the interaction of macrophages with cells of the CADM1-negative ED ATLL cell line and CADM1-transfected ED cells was tested. However, significant cell-cell interaction between macrophage and CADM1-transfected ED cells was not observed. We conclude that CADM1 was not associated with cell-cell interaction between lymphoma cells and macrophages, although CADM1 may be a useful marker of ATLL for diagnostic procedures.
Collapse
Affiliation(s)
- Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University
| | - Chaoya Ma
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University
| | - Hiromu Yano
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University
| | - Cheng Pan
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University
| | - Hasita Horlad
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University
| | - Yoichi Saito
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University
| | - Koji Ohnishi
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University
| | - Yukio Fujiwara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University
| | - Yutaka Okuno
- Department of Hematology, Graduate School of Medical Sciences, Kumamoto University
| | - Kisato Nosaka
- Department of Hematology, Graduate School of Medical Sciences, Kumamoto University
| | - Shunsuke Shimosaki
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, University of Miyazaki
| | - Kazuhiro Morishita
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, University of Miyazaki
| | - Masao Matsuoka
- Department of Hematology, Graduate School of Medical Sciences, Kumamoto University.,Laboratory of Virus Control, Institute for Virus Research, Kyoto University
| | - Tomohiko Wakayama
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University
| | - Motohiro Takeya
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University
| |
Collapse
|
8
|
Repeated hapten exposure induces persistent tactile sensitivity in mice modeling localized provoked vulvodynia. PLoS One 2017; 12:e0169672. [PMID: 28158195 PMCID: PMC5291437 DOI: 10.1371/journal.pone.0169672] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 12/20/2016] [Indexed: 02/06/2023] Open
Abstract
Background Vulvodynia is a remarkably prevalent chronic pain condition of unknown etiology. Epidemiologic studies associate the risk of vulvodynia with a history of atopic disease. We used an established model of hapten-driven contact hypersensitivity to investigate the underlying mechanisms of allergy-provoked prolonged sensitivity to pressure. Methods We sensitized female ND4 Swiss mice to the hapten oxazolone on their flanks, and subsequently challenged them four days later with oxazolone or vehicle for ten consecutive days on the labia. We evaluated labiar sensitivity to touch, local mast cell accumulation, and hyperinnervation after ten challenges. Results Oxazolone-challenged mice developed significant tactile sensitivity that persisted for over three weeks after labiar allergen exposures ceased. Allergic sites were characterized by mast cell accumulation, sensory hyper-innervation and infiltration of regulatory CD4+CD25+FoxP3+ T cells as well as localized early increases in transcripts encoding Nerve Growth Factor and nerve-mast cell synapse marker Cell Adhesion Molecule 1. Local depletion of mast cells by intra-labiar administration of secretagogue compound 48/80 led to a reduction in both nerve density and tactile sensitivity. Conclusions Mast cells regulate allergy-provoked persistent sensitivity to touch. Mast cell-targeted therapeutic strategies may provide novel means to manage and limit chronic pain conditions associated with atopic disease.
Collapse
|