1
|
Thin KA, Angsuwatcharakon P, Edwards SW, Mutirangura A, Puttipanyalears C. Upregulation of p16INK4A in Peripheral White Blood Cells as a Novel Screening Marker for Colorectal Carcinoma. Asian Pac J Cancer Prev 2022; 23:3753-3761. [PMID: 36444588 PMCID: PMC9930939 DOI: 10.31557/apjcp.2022.23.11.3753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVE Screening of colorectal cancer (CRC) is important for the early detection. CRC is relating to aging and immuno-senescence. One such senescent marker is p16INK4A expression in immune cells. The objective of the study is to investigate the protein expression of p16INK4A in peripheral white blood cells as a screening marker for colorectal cancer. METHODS A case-control studies were conducted. Cases were patients with colorectal cancer and controls were matched with cases based on age and sex. Peripheral blood was collected from patients and controls and the protein p16INK4A was measured with immunofluorescent techniques. The p16INK4A levels from cases and controls were evaluated using ROC analysis to be used as a screening marker in CRC patients. Mean fluorescent intensity of p16INK4A of cases and controls were analyzed in CD45+, CD3+ or CD14+ cells. The p16INK4A levels of cases were also correlated with clinical data. RESULT Statistically significant increased expression of p16INK4A levels were found in cases compared to controls. p16INK4A in peripheral immune cells had 78% sensitivity and 71% specificity which can possibly be used as a diagnosis tool for colorectal cancer. P16INK4A-positive cell percentage and mean florescent intensity were significantly higher in CD45+ cells, CD3 positive cells and CD14 positive cells. No significant correlation was observed with the clinical data and p16INK4A level of CRC patients. CONCLUSION The significant increase of p16 INK4A expression level in peripheral immune cells represents potential for use as a CRC screening marker.
Collapse
Affiliation(s)
- Khin Aye Thin
- Joint PhD Program in Biomedical Sciences and Biotechnology between Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand and Institute of Integrative Biology, University of Liverpool, Liverpool, L7 8TX, United Kingdom.
| | | | - Steven W Edwards
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L7 8TX, United Kingdom.
| | - Apiwat Mutirangura
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand. ,Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Charoenchai Puttipanyalears
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand. ,Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand. ,For Correspondence:
| |
Collapse
|
2
|
Fung TS, Chakrabarti R, Kollasser J, Rottner K, Stradal TEB, Kage F, Higgs HN. Parallel kinase pathways stimulate actin polymerization at depolarized mitochondria. Curr Biol 2022; 32:1577-1592.e8. [PMID: 35290799 PMCID: PMC9078333 DOI: 10.1016/j.cub.2022.02.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/04/2022] [Accepted: 02/21/2022] [Indexed: 12/31/2022]
Abstract
Mitochondrial damage (MtD) represents a dramatic change in cellular homeostasis, necessitating metabolic changes and stimulating mitophagy. One rapid response to MtD is a rapid peri-mitochondrial actin polymerization termed ADA (acute damage-induced actin). The activation mechanism for ADA is unknown. Here, we use mitochondrial depolarization or the complex I inhibitor metformin to induce ADA. We show that two parallel signaling pathways are required for ADA. In one pathway, increased cytosolic calcium in turn activates PKC-β, Rac, WAVE regulatory complex, and Arp2/3 complex. In the other pathway, a drop in cellular ATP in turn activates AMPK (through LKB1), Cdc42, and FMNL formins. We also identify putative guanine nucleotide exchange factors for Rac and Cdc42, Trio and Fgd1, respectively, whose phosphorylation states increase upon mitochondrial depolarization and whose suppression inhibits ADA. The depolarization-induced calcium increase is dependent on the mitochondrial sodium-calcium exchanger NCLX, suggesting initial mitochondrial calcium efflux. We also show that ADA inhibition results in enhanced mitochondrial shape changes upon mitochondrial depolarization, suggesting that ADA inhibits these shape changes. These depolarization-induced shape changes are not fragmentation but a circularization of the inner mitochondrial membrane, which is dependent on the inner mitochondrial membrane protease Oma1. ADA inhibition increases the proteolytic processing of an Oma1 substrate, the dynamin GTPase Opa1. These results show that ADA requires the combined action of the Arp2/3 complex and formin proteins to polymerize a network of actin filaments around mitochondria and that the ADA network inhibits the rapid mitochondrial shape changes that occur upon mitochondrial depolarization.
Collapse
Affiliation(s)
- Tak Shun Fung
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Rajarshi Chakrabarti
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Jana Kollasser
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Klemens Rottner
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany; Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Theresia E B Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Frieda Kage
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Henry N Higgs
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
3
|
Mousavi MJ, Karami J, Aslani S, Tahmasebi MN, Vaziri AS, Jamshidi A, Farhadi E, Mahmoudi M. Transformation of fibroblast-like synoviocytes in rheumatoid arthritis; from a friend to foe. AUTO- IMMUNITY HIGHLIGHTS 2021; 12:3. [PMID: 33546769 PMCID: PMC7863458 DOI: 10.1186/s13317-020-00145-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023]
Abstract
Swelling and the progressive destruction of articular cartilage are major characteristics of rheumatoid arthritis (RA), a systemic autoimmune disease that directly affects the synovial joints and often causes severe disability in the affected positions. Recent studies have shown that type B synoviocytes, which are also called fibroblast-like synoviocytes (FLSs), as the most commonly and chiefly resident cells, play a crucial role in early-onset and disease progression by producing various mediators. During the pathogenesis of RA, the FLSs' phenotype is altered, and represent invasive behavior similar to that observed in tumor conditions. Modified and stressful microenvironment by FLSs leads to the recruitment of other immune cells and, eventually, pannus formation. The origins of this cancerous phenotype stem fundamentally from the significant metabolic changes in glucose, lipids, and oxygen metabolism pathways. Moreover, the genetic abnormalities and epigenetic alterations have recently been implicated in cancer-like behaviors of RA FLSs. In this review, we will focus on the mechanisms underlying the transformation of FLSs to a cancer-like phenotype during RA. A comprehensive understanding of these mechanisms may lead to devising more effective and targeted treatment strategies.
Collapse
Affiliation(s)
- Mohammad Javad Mousavi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Hematology, Faculty of Allied Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Jafar Karami
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Laboratory Sciences, Khomein University of Medical Sciences, Khomein, Iran
| | - Saeed Aslani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Arash Sharafat Vaziri
- Joint Reconstruction Reseach Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Farhadi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Abstract
Rho GTPases are known to play an essential role in fundamental processes such as defining cell shape, polarity and migration. As such, the majority of Rho GTPases localize and function at, or close to, the plasma membrane. However, it is becoming increasingly clear that a number of Rho family proteins are also associated with the Golgi complex, where they not only regulate events at this organelle but also more widely across the cell. Given the central location of this organelle, and the numerous membrane trafficking pathways that connect it to both the endocytic and secretory systems of cells, it is clear that the Golgi is fundamental for maintaining cellular homoeostasis. In this review, we describe these GTPases in the context of how they regulate Golgi architecture, membrane trafficking into and away from this organelle, and cell polarity and migration. We summarize the key findings that show the growing importance of the pool of Rho GTPases associated with Golgi function, namely Cdc42, RhoA, RhoD, RhoBTB1 and RhoBTB3, and we discuss how they act in concert with other key families of molecules associated with the Golgi, including Rab GTPases and matrix proteins.
Collapse
Affiliation(s)
- Margaritha M Mysior
- Cell Screening Laboratory, School of Biology & Environmental Science, University College Dublin (UCD), Dublin Ireland
| | - Jeremy C Simpson
- Cell Screening Laboratory, School of Biology & Environmental Science, University College Dublin (UCD), Dublin Ireland
| |
Collapse
|
5
|
Olayioye MA, Noll B, Hausser A. Spatiotemporal Control of Intracellular Membrane Trafficking by Rho GTPases. Cells 2019; 8:cells8121478. [PMID: 31766364 PMCID: PMC6952795 DOI: 10.3390/cells8121478] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 12/17/2022] Open
Abstract
As membrane-associated master regulators of cytoskeletal remodeling, Rho GTPases coordinate a wide range of biological processes such as cell adhesion, motility, and polarity. In the last years, Rho GTPases have also been recognized to control intracellular membrane sorting and trafficking steps directly; however, how Rho GTPase signaling is regulated at endomembranes is still poorly understood. In this review, we will specifically address the local Rho GTPase pools coordinating intracellular membrane trafficking with a focus on the endo- and exocytic pathways. We will further highlight the spatiotemporal molecular regulation of Rho signaling at endomembrane sites through Rho regulatory proteins, the GEFs and GAPs. Finally, we will discuss the contribution of dysregulated Rho signaling emanating from endomembranes to the development and progression of cancer.
Collapse
|
6
|
Wen KK, Han SS, Vyas YM. Wiskott-Aldrich syndrome protein senses irradiation-induced DNA damage to coordinate the cell-protective Golgi dispersal response in human T and B lymphocytes. J Allergy Clin Immunol 2019; 145:324-334. [PMID: 31604087 DOI: 10.1016/j.jaci.2019.09.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/01/2019] [Accepted: 09/24/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Wiskott-Aldrich syndrome (WAS) is an X-linked primary immune deficiency disorder resulting from Wiskott-Aldrich syndrome protein (WASp) deficiency. Lymphocytes from patients with WAS manifest increased DNA damage and lymphopenia from cell death, yet how WASp influences DNA damage-linked cell survival is unknown. A recently described mechanism promoting cell survival after ionizing radiation (IR)-induced DNA damage involves fragmentation and dispersal of the Golgi apparatus, known as the Golgi-dispersal response (GDR), which uses the Golgi phosphoprotein 3 (GOLPH3)-DNA-dependent protein kinase (DNA-PK)-myosin XVIIIA-F-actin signaling pathway. OBJECTIVE We sought to define WASp's role in the DNA damage-induced GDR and its disruption as a contributor to the development of radiosensitivity-linked immunodeficiency in patients with WAS. METHODS In human TH and B-cell culture systems, DNA damage-induced GDR elicited by IR or radiomimetic chemotherapy was monitored in the presence or absence of WASp or GOLPH3 alone or both together. RESULTS WASp deficiency completely prevents the development of IR-induced GDR in human TH and B cells, despite the high DNA damage load. Loss of WASp impedes nuclear translocation of GOLPH3 and its colocalization with the DNA-dependent protein kinase catalytic subunit (DNA-PKcs). Surprisingly, however, depletion of GOLPH3 alone or depolymerization of F-actin in WASp-sufficient TH cells still allows development of robust GDR, suggesting that WASp, but not GOLPH3, is essential for GDR and cell survival after IR-induced DNA-damage in human lymphocytes. CONCLUSION The study identifies WASp as a novel effector of the nucleus-to-Golgi cell-survival pathway triggered by IR-induced DNA damage in cells of the hematolymphoid lineage and proposes an impaired GDR as a new cause for development of a "radiosensitive" form of immune dysregulation in patients with WAS.
Collapse
Affiliation(s)
- Kuo-Kuang Wen
- Division of Pediatric Hematology-Oncology, University of Iowa Carver College of Medicine, and the Stead Family University of Iowa Children's Hospital, Iowa City, Iowa
| | - Seong-Su Han
- Division of Pediatric Hematology-Oncology, University of Iowa Carver College of Medicine, and the Stead Family University of Iowa Children's Hospital, Iowa City, Iowa
| | - Yatin M Vyas
- Division of Pediatric Hematology-Oncology, University of Iowa Carver College of Medicine, and the Stead Family University of Iowa Children's Hospital, Iowa City, Iowa.
| |
Collapse
|