1
|
Chiteri VN, Juma VO, Okwoyo JM, Moindi SK, Mapfumo KZ, Madzvamuse A. Exploring the spatio-temporal dynamics in activator-inhibitor systems through a dual approach of analysis and computation. Math Biosci 2025; 385:109449. [PMID: 40316164 DOI: 10.1016/j.mbs.2025.109449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/24/2025] [Accepted: 04/12/2025] [Indexed: 05/04/2025]
Abstract
Real-world mathematical models often manifest as systems of non-linear differential equations, which presents challenges in obtaining closed-form analytical solutions. In this paper, we study the diffusion-driven instability of an activator-inhibitor-type reaction-diffusion (RD) system modeling the GEF-Rho-Myosin signaling pathway linked to cellular contractility. The mathematical model we study is formulated from first principles using experimental observations. The model formulation is based on the biological and mathematical assumptions. The novelty is the incorporation of Myo9b as a GAP for RhoA, leading to a new mathematical model that describes Rho activity dynamics linked to cell contraction dynamics. Assuming mass conservation of molecular species and adopting a quasi-steady state assumption based on biological observations, model reduction is undertaken and leads us to a system of two equations. We adopt a dual approach of mathematical analysis and numerical computations to study the spatiotemporal dynamics of the system. First, in absence of diffusion, we use a combination of phase-plane analysis, numerical bifurcation and simulations to characterize the temporal dynamics of the model. In the absence of spatial variations, we identified two sets of parameters where the model exhibit different transition dynamics. For some set of parameters, the model transitions from stable to oscillatory and back to stable, while for another set, the model dynamics transition from stable to bistable and back to stable dynamics. To study the effect of parameter variation on model solutions, we use partial rank correlation coefficient (PRCC) to characterize the sensitivity of the model steady states with respect to parameters. Second, we extend the analysis of the model by studying conditions under which a uniform steady state becomes unstable in the presence of spatial variations, in a process known as Turing diffusion-driven instability. By exploiting the necessary conditions for diffusion-driven instability and the sufficient conditions for pattern formation we carry out, numerically, parameter estimation through the use of mode isolation. To support theoretical and computational findings, we employ the pdepe solver in one-space dimension and the finite difference method in two-space dimension.
Collapse
Affiliation(s)
| | - Victor Ogesa Juma
- Mathematics Department, University of British Columbia, 1984 Mathematics Road, Vancouver, V6T 1Z2, British Columbia, Canada.
| | | | | | - Kudzanayi Zebedia Mapfumo
- Mathematics Department, University of British Columbia, 1984 Mathematics Road, Vancouver, V6T 1Z2, British Columbia, Canada.
| | - Anotida Madzvamuse
- Mathematics Department, University of British Columbia, 1984 Mathematics Road, Vancouver, V6T 1Z2, British Columbia, Canada; Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria, 0132, South Africa; Department of Mathematics and Applied Mathematics, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, South Africa; Department of Mathematics and Computational Science, University of Zimbabwe, Mt Pleasant, Harare, Zimbabwe.
| |
Collapse
|
2
|
Liu OX, Lin LB, Bunk S, Chew T, Wu SK, Motegi F, Low BC. A ZO-2 scaffolding mechanism regulates the Hippo signalling pathway. FEBS J 2025; 292:1587-1601. [PMID: 39462647 DOI: 10.1111/febs.17304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 09/06/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024]
Abstract
Contact inhibition of proliferation is a critical cell density control mechanism governed by the Hippo signalling pathway. The biochemical signalling underlying cell density-dependent cues regulating Hippo signalling and its downstream effectors, YAP, remains poorly understood. Here, we reveal that the tight junction protein ZO-2 is required for the contact-mediated inhibition of proliferation. We additionally determined that the well-established molecular players of this process, namely Hippo kinase LATS1 and YAP, are regulated by ZO-2 and that the scaffolding function of ZO-2 promotes the interaction with and phosphorylation of YAP by LATS1. Mechanistically, YAP is phosphorylated when ZO-2 brings LATS1 and YAP together via its SH3 and PDZ domains, respectively, subsequently leading to the cytoplasmic retention and inactivation of YAP. In conclusion, we demonstrate that ZO-2 maintains Hippo signalling pathway activation by promoting the stability of LATS1 to inactivate YAP.
Collapse
Affiliation(s)
- Olivia Xuan Liu
- Mechanobiology Institute, National University of Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | - Soumya Bunk
- Mechanobiology Institute, National University of Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Tiweng Chew
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Selwin K Wu
- Mechanobiology Institute, National University of Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Fumio Motegi
- Mechanobiology Institute, National University of Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
- Temasek Life-Sciences Laboratory, Singapore, Singapore
- Institute for Genetic Medicine, Hokkaido University, Japan
| | - Boon Chuan Low
- Mechanobiology Institute, National University of Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
- NUS College, National University of Singapore, Singapore
| |
Collapse
|
3
|
Dong Z, Zhuo R, Wang Q, Sun Y, Zhou Z, Wu R, Liu Y, Liu M. Kif15 regulates Coro1a + cell migration and phagocytosis in zebrafish after spinal cord injury. Int Immunopharmacol 2025; 146:113874. [PMID: 39709909 DOI: 10.1016/j.intimp.2024.113874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 12/24/2024]
Abstract
The role of immune cells is crucial in nerve regeneration following spinal cord injury. Kif15, a member of the kinesin family, has been shown to enhance macrophage phagocytosis. This study investigates the impact of Kif15 deficiency on immune cells in zebrafish with spinal cord injury. Using kif15 morphants in Tg(coro1a:EGFP) zebrafish, we observed increased recruitment of Coro1a+ cells to the injury site, followed by a rapid decline in kif15 morphants. Transcriptome analysis revealed that inflammatory and phagocytic signals were significantly enhanced at 1-hour post-injury (hpi), while MAPK pathways indicated growth at 24 hpi. Enhanced phagocytosis was confirmed using neutral red particles, and the Kif15 inhibitor GW406108X further supported increased migration and phagocytosis in macrophages. Activation of Cdc42 and RhoA was significantly increased, contributing to cell motility and phagocytosis. Additionally, the number of apoptotic cells was reduced in kif15 morphants, suggesting that Kif15 depletion could activate immune cells and efficiently remove apoptotic cells. Our study provides in vivo evidence that Kif15 is involved in immune cell migration and phagocytosis and suggests potential therapeutic roles for Kif15 inhibitors in spinal cord injury treatment.
Collapse
Affiliation(s)
- Zhangji Dong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong Jiangsu 226001, China
| | - Run Zhuo
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong Jiangsu 226001, China
| | - Qing Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong Jiangsu 226001, China
| | - Ying Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong Jiangsu 226001, China
| | - Zhihao Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong Jiangsu 226001, China
| | - Ronghua Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong Jiangsu 226001, China
| | - Yan Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong Jiangsu 226001, China
| | - Mei Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong Jiangsu 226001, China.
| |
Collapse
|
4
|
Lechuga S, Marino-Melendez A, Davis A, Zalavadia A, Khan A, Longworth MS, Ivanov AI. Coactosin-like protein 1 regulates integrity and repair of model intestinal epithelial barriers via actin binding dependent and independent mechanisms. Front Cell Dev Biol 2024; 12:1405454. [PMID: 39040043 PMCID: PMC11260685 DOI: 10.3389/fcell.2024.1405454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
The actin cytoskeleton regulates the integrity and repair of epithelial barriers by mediating the assembly of tight junctions (TJs), and adherens junctions (AJs), and driving epithelial wound healing. Actin filaments undergo a constant turnover guided by numerous actin-binding proteins, however, the roles of actin filament dynamics in regulating intestinal epithelial barrier integrity and repair remain poorly understood. Coactosin-like protein 1 (COTL1) is a member of the ADF/cofilin homology domain protein superfamily that binds and stabilizes actin filaments. COTL1 is essential for neuronal and cancer cell migration, however, its functions in epithelia remain unknown. The goal of this study is to investigate the roles of COTL1 in regulating the structure, permeability, and repair of the epithelial barrier in human intestinal epithelial cells (IEC). COTL1 was found to be enriched at apical junctions in polarized IEC monolayers in vitro. The knockdown of COTL1 in IEC significantly increased paracellular permeability, impaired the steady state TJ and AJ integrity, and attenuated junctional reassembly in a calcium-switch model. Consistently, downregulation of COTL1 expression in Drosophila melanogaster increased gut permeability. Loss of COTL1 attenuated collective IEC migration and decreased cell-matrix attachment. The observed junctional abnormalities in COTL1-depleted IEC were accompanied by the impaired assembly of the cortical actomyosin cytoskeleton. Overexpression of either wild-type COTL1 or its actin-binding deficient mutant tightened the paracellular barrier and activated junction-associated myosin II. Furthermore, the actin-uncoupled COTL1 mutant inhibited epithelial migration and matrix attachment. These findings highlight COTL1 as a novel regulator of the intestinal epithelial barrier integrity and repair.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Andrei I. Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic Foundation, Cleveland, OH, United States
| |
Collapse
|
5
|
Fasoulakis Z, Psarommati MZ, Papapanagiotou A, Pergialiotis V, Koutras A, Douligeris A, Mortaki A, Mihail A, Theodora M, Stavros S, Karakalpakis D, Papamihail M, Kontomanolis EN, Daskalakis G, Antsaklis P. MicroRNAs Can Influence Ovarian Cancer Progression by Dysregulating Integrin Activity. Cancers (Basel) 2023; 15:4449. [PMID: 37760437 PMCID: PMC10526761 DOI: 10.3390/cancers15184449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Ovarian cancer is a deadly disease that affects thousands of women worldwide. Integrins, transmembrane receptors that mediate cell adhesion and signaling, play important roles in ovarian cancer progression, metastasis, and drug resistance. Dysregulated expression of integrins is implicated in various cellular processes, such as cell migration, invasion, and proliferation. Emerging evidence suggests that microRNAs (miRNAs) can regulate integrin expression and function, thus affecting various physiological and pathological processes, including ovarian cancer. In this article, we review the current understanding of integrin-mediated cellular processes in ovarian cancer and the roles of miRNAs in regulating integrins. We also discuss the therapeutic potential of targeting miRNAs that regulate integrins for the treatment of ovarian cancer. Targeting miRNAs that regulate integrins or downstream signaling pathways of integrins may provide novel therapeutic strategies for inhibiting integrin-mediated ovarian cancer progression.
Collapse
Affiliation(s)
- Zacharias Fasoulakis
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (V.P.); (A.K.); (A.D.); (A.M.); (A.M.); (M.T.); (D.K.); (M.P.)
| | - Michaela-Zoi Psarommati
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 681 00 Alexandroupolis, Greece; (M.-Z.P.); (E.N.K.)
| | - Angeliki Papapanagiotou
- Laboratory of Chemistry Biology, National and Kapodistrian University of Athens, 115 28 Athens, Greece
| | - Vasilios Pergialiotis
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (V.P.); (A.K.); (A.D.); (A.M.); (A.M.); (M.T.); (D.K.); (M.P.)
| | - Antonios Koutras
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (V.P.); (A.K.); (A.D.); (A.M.); (A.M.); (M.T.); (D.K.); (M.P.)
| | - Athanasios Douligeris
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (V.P.); (A.K.); (A.D.); (A.M.); (A.M.); (M.T.); (D.K.); (M.P.)
| | - Anastasia Mortaki
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (V.P.); (A.K.); (A.D.); (A.M.); (A.M.); (M.T.); (D.K.); (M.P.)
| | - Antonios Mihail
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (V.P.); (A.K.); (A.D.); (A.M.); (A.M.); (M.T.); (D.K.); (M.P.)
| | - Marianna Theodora
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (V.P.); (A.K.); (A.D.); (A.M.); (A.M.); (M.T.); (D.K.); (M.P.)
| | - Sofoklis Stavros
- 3rd Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Medical School, Attikon Hospital, 124 62 Athens, Greece;
| | - Defkalion Karakalpakis
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (V.P.); (A.K.); (A.D.); (A.M.); (A.M.); (M.T.); (D.K.); (M.P.)
| | - Maria Papamihail
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (V.P.); (A.K.); (A.D.); (A.M.); (A.M.); (M.T.); (D.K.); (M.P.)
| | - Emmanuel N. Kontomanolis
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 681 00 Alexandroupolis, Greece; (M.-Z.P.); (E.N.K.)
| | - George Daskalakis
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, 106 76 Athens, Greece; (G.D.); (P.A.)
| | - Panos Antsaklis
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, 106 76 Athens, Greece; (G.D.); (P.A.)
| |
Collapse
|
6
|
Nguyen DT, Ogando-Rivas E, Liu R, Wang T, Rubin J, Jin L, Tao H, Sawyer WW, Mendez-Gomez HR, Cascio M, Mitchell DA, Huang J, Sawyer WG, Sayour EJ, Castillo P. CAR T Cell Locomotion in Solid Tumor Microenvironment. Cells 2022; 11:1974. [PMID: 35741103 PMCID: PMC9221866 DOI: 10.3390/cells11121974] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 01/25/2023] Open
Abstract
The promising outcomes of chimeric antigen receptor (CAR) T cell therapy in hematologic malignancies potentiates its capability in the fight against many cancers. Nevertheless, this immunotherapy modality needs significant improvements for the treatment of solid tumors. Researchers have incrementally identified limitations and constantly pursued better CAR designs. However, even if CAR T cells are armed with optimal killer functions, they must overcome and survive suppressive barriers imposed by the tumor microenvironment (TME). In this review, we will discuss in detail the important role of TME in CAR T cell trafficking and how the intrinsic barriers contribute to an immunosuppressive phenotype and cancer progression. It is of critical importance that preclinical models can closely recapitulate the in vivo TME to better predict CAR T activity. Animal models have contributed immensely to our understanding of human diseases, but the intensive care for the animals and unreliable representation of human biology suggest in vivo models cannot be the sole approach to CAR T cell therapy. On the other hand, in vitro models for CAR T cytotoxic assessment offer valuable insights to mechanistic studies at the single cell level, but they often lack in vivo complexities, inter-individual heterogeneity, or physiologically relevant spatial dimension. Understanding the advantages and limitations of preclinical models and their applications would enable more reliable prediction of better clinical outcomes.
Collapse
Affiliation(s)
- Duy T. Nguyen
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA; (D.T.N.); (W.W.S.); (W.G.S.)
| | - Elizabeth Ogando-Rivas
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - Ruixuan Liu
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - Theodore Wang
- College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Jacob Rubin
- Warrington College of Business, University of Florida, Gainesville, FL 32610, USA;
| | - Linchun Jin
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - Haipeng Tao
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - William W. Sawyer
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA; (D.T.N.); (W.W.S.); (W.G.S.)
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, Gainesville, FL 32610, USA;
| | - Hector R. Mendez-Gomez
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - Matthew Cascio
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, Gainesville, FL 32610, USA;
| | - Duane A. Mitchell
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - Jianping Huang
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - W. Gregory Sawyer
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA; (D.T.N.); (W.W.S.); (W.G.S.)
| | - Elias J. Sayour
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, Gainesville, FL 32610, USA;
| | - Paul Castillo
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, Gainesville, FL 32610, USA;
| |
Collapse
|
7
|
Sharma S, Rikhy R. Spatiotemporal recruitment of RhoGTPase protein GRAF inhibits actomyosin ring constriction in Drosophila cellularization. eLife 2021; 10:63535. [PMID: 33835025 PMCID: PMC8081525 DOI: 10.7554/elife.63535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/31/2021] [Indexed: 11/18/2022] Open
Abstract
Actomyosin contractility is regulated by Rho-GTP in cell migration, cytokinesis and morphogenesis in embryo development. Whereas Rho activation by Rho-GTP exchange factor (GEF), RhoGEF2, is well known in actomyosin contractility during cytokinesis at the base of invaginating membranes in Drosophila cellularization, Rho inhibition by RhoGTPase-activating proteins (GAPs) remains to be studied. We have found that the RhoGAP, GRAF, inhibits actomyosin contractility during cellularization. GRAF is enriched at the cleavage furrow tip during actomyosin assembly and initiation of ring constriction. Graf depletion shows increased Rho-GTP, increased Myosin II and ring hyper constriction dependent upon the loss of the RhoGTPase domain. GRAF and RhoGEF2 are present in a balance for appropriate activation of actomyosin ring constriction. RhoGEF2 depletion and abrogation of Myosin II activation in Rho kinase mutants suppress the Graf hyper constriction defect. Therefore, GRAF recruitment restricts Rho-GTP levels in a spatiotemporal manner for inhibiting actomyosin contractility during cellularization.
Collapse
Affiliation(s)
- Swati Sharma
- Biology, Indian Institute of Science Education and Research, Pune, India
| | - Richa Rikhy
- Biology, Indian Institute of Science Education and Research, Pune, India
| |
Collapse
|
8
|
MAGIs regulate aPKC to enable balanced distribution of intercellular tension for epithelial sheet homeostasis. Commun Biol 2021; 4:337. [PMID: 33712709 PMCID: PMC7954791 DOI: 10.1038/s42003-021-01874-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 02/19/2021] [Indexed: 01/16/2023] Open
Abstract
Constriction of the apical plasma membrane is a hallmark of epithelial cells that underlies cell shape changes in tissue morphogenesis and maintenance of tissue integrity in homeostasis. Contractile force is exerted by a cortical actomyosin network that is anchored to the plasma membrane by the apical junctional complexes (AJC). In this study, we present evidence that MAGI proteins, structural components of AJC whose function remained unclear, regulate apical constriction of epithelial cells through the Par polarity proteins. We reveal that MAGIs are required to uniformly distribute Partitioning defective-3 (Par-3) at AJC of cells throughout the epithelial monolayer. MAGIs recruit ankyrin-repeat-, SH3-domain- and proline-rich-region-containing protein 2 (ASPP2) to AJC, which modulates Par-3-aPKC to antagonize ROCK-driven contractility. By coupling the adhesion machinery to the polarity proteins to regulate cellular contractility, we propose that MAGIs play essential and central roles in maintaining steady state intercellular tension throughout the epithelial cell sheet. Matsuzawa et al. show that adhesion-related molecules MAGI-1 and MAGI-3 localize partitioning defective-3 (Par-3) at apical junctional complexes of cells throughout the epithelial monolayer. This study provides insights into how tension distribution contributes to cellular contractility in epithelial tissue homeostasis.
Collapse
|
9
|
Ovarian Cancer Dissemination-A Cell Biologist's Perspective. Cancers (Basel) 2019; 11:cancers11121957. [PMID: 31817625 PMCID: PMC6966436 DOI: 10.3390/cancers11121957] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 12/04/2019] [Indexed: 12/16/2022] Open
Abstract
Epithelial ovarian cancer (EOC) comprises multiple disease states representing a variety of distinct tumors that, irrespective of tissue of origin, genetic aberrations and pathological features, share common patterns of dissemination to the peritoneal cavity. EOC peritoneal dissemination is a stepwise process that includes the formation of malignant outgrowths that detach and establish widespread peritoneal metastases through adhesion to serosal membranes. The cell biology associated with outgrowth formation, detachment, and de novo adhesion is at the nexus of diverse genetic backgrounds that characterize the disease. Development of treatment for metastatic disease will require detailed characterization of cellular processes involved in each step of EOC peritoneal dissemination. This article offers a review of the literature that relates to the current stage of knowledge about distinct steps of EOC peritoneal dissemination, with emphasis on the cell biology aspects of the process.
Collapse
|
10
|
Sutherland A, Keller R, Lesko A. Convergent extension in mammalian morphogenesis. Semin Cell Dev Biol 2019; 100:199-211. [PMID: 31734039 DOI: 10.1016/j.semcdb.2019.11.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022]
Abstract
Convergent extension is a fundamental morphogenetic process that underlies not only the generation of the elongated vertebrate body plan from the initially radially symmetrical embryo, but also the specific shape changes characteristic of many individual tissues. These tissue shape changes are the result of specific cell behaviors, coordinated in time and space, and affected by the physical properties of the tissue. While mediolateral cell intercalation is the classic cellular mechanism for producing tissue convergence and extension, other cell behaviors can also provide similar tissue-scale distortions or can modulate the effects of mediolateral cell intercalation to sculpt a specific shape. Regulation of regional tissue morphogenesis through planar polarization of the variety of underlying cell behaviors is well-recognized, but as yet is not well understood at the molecular level. Here, we review recent advances in understanding the cellular basis for convergence and extension and its regulation.
Collapse
Affiliation(s)
- Ann Sutherland
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, 22908, USA.
| | - Raymond Keller
- Department of Biology, University of Virginia, Charlottesville, VA, 22903, USA.
| | - Alyssa Lesko
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, 22908, USA.
| |
Collapse
|