1
|
de Macedo MP, Glanzner WG, Gutierrez K, Currin L, Rissi VB, Baldassarre H, McGraw S, Bordignon V. Heterologous expression of bovine histone H1foo into porcine fibroblasts alters the transcriptome profile but not embryo development following nuclear transfer. J Assist Reprod Genet 2025:10.1007/s10815-025-03437-1. [PMID: 40025368 DOI: 10.1007/s10815-025-03437-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 02/18/2025] [Indexed: 03/04/2025] Open
Abstract
PURPOSE Somatic cell nuclear transfer (SCNT) is a valuable tool for investigating reprogramming mechanisms and creating animal clones for applications in production, conservation, companionship, and biomedical research. However, SCNT efficiency remains low. Expression of nuclear proteins associated with an undifferentiated chromatin state, such as the oocyte-specific variant of the linker histone H1 (H1foo), represents a strategy for improving reprogramming outcomes, but this approach has not been tested in the context of SCNT. METHODS Bovine H1foo (bH1foo) was transfected into porcine fibroblasts via electroporation for expression until SCNT. The transcriptomic profile of these cells was analyzed, and their potential as donor cells for SCNT was evaluated 48 h post-electroporation. RESULTS Strong nuclear localization of bH1foo persisted for 48 h post-electroporation. A total of 447 genes were differentially expressed, and lower levels of H3K4me3 and H3K27me3 were detected in bH1foo-expressing cells, indicating changes in chromatin remodeling and function. Embryo development and total cell number per blastocyst were similar between SCNT embryos produced with control and bH1foo-expressing cells. mRNA levels of genes involved in embryonic genome activation were comparable between embryos derived from control and bH1foo-expressing cells on days 3 and 4 of development, suggesting that bH1foo did not disrupt this critical process. CONCLUSIONS The heterologous expression of bovine H1foo altered the chromatin function of porcine fibroblasts without impairing development to the blastocyst stage following SCNT. These results highlight the potential of expressing nuclear proteins as a strategy to enhance cell reprogramming and cloning efficiency, including interspecies cloning applications.
Collapse
Affiliation(s)
- Mariana Priotto de Macedo
- Department of Animal Science, Mcgill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Montreal, QC, H9X 3V9, Canada
| | - Werner Giehl Glanzner
- Department of Animal Science, Mcgill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Montreal, QC, H9X 3V9, Canada
| | - Karina Gutierrez
- Department of Animal Science, Mcgill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Montreal, QC, H9X 3V9, Canada
| | - Luke Currin
- Department of Animal Science, Mcgill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Montreal, QC, H9X 3V9, Canada
| | - Vitor Braga Rissi
- Department of Agriculture, Biodiversity and Forests, Federal University of Santa Catarina, Curitibanos, SC, Brazil
| | - Hernan Baldassarre
- Department of Animal Science, Mcgill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Montreal, QC, H9X 3V9, Canada
| | - Serge McGraw
- Azrieli Research Centre of Sainte-Justine University Hospital, Montreal, QC, Canada
- Department of Obstetrics and Gynecology, University of Montreal, Montreal, QC, Canada
| | - Vilceu Bordignon
- Department of Animal Science, Mcgill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Montreal, QC, H9X 3V9, Canada.
| |
Collapse
|
2
|
Liu M, Li E, Mu H, Zhao Z, Chen X, Gao J, Gao D, Liu Z, Han J, Zhong L, Cao S. LncRNA XLOC-040580 targeted by TPRA1 coordinate zygotic genome activation during porcine embryonic development. Cell Transplant 2025; 34:9636897251332527. [PMID: 40245181 PMCID: PMC12035016 DOI: 10.1177/09636897251332527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/26/2025] [Accepted: 03/11/2025] [Indexed: 04/19/2025] Open
Abstract
Long noncoding RNAs (lncRNAs) are crucial in porcine preimplantation embryonic development, yet their regulatory role during zygote genome activation (ZGA) is poorly understood. We analyzed transcriptome data from porcine fetal fibroblasts (PEF), induced pluripotent stem cells (iPS), and preimplantation embryos, identifying ZGA-specific lncRNAs like XLOC-040580, and further predicted its potentially interacting genes TPRA1 and BCL2L1 via co-expression network. XLOC-040580 was knocked down by siRNA microinjection and the expression of ZGA-related genes was detected by qRT-PCR. After microinjecting siRNA targeting TPRA1 and BCL2L1 at the one-cell stage, we counted the blastocyst development rate. The blastocyst development rate was consistent with the results from si-XLOC-040580 after si-TPRA1. Through dual-luciferase reporter assays, we found that XLOC-040580 was a downstream target of TPRA1. To further elucidate the mechanism of XLOC-040580, Single-cell mRNA sequencing after XLOC-040580 knockdown revealed its regulatory network involved in embryonic developmental defects. Transcriptome analysis revealed that XLOC-040580 was specifically expressed during zygote activation. Knockdown of XLOC-040580 decreased the blastocyst development rate and reduced both the total blastocyst cell number and TE cell number. TPRA1 and BCL2L1 were specifically co-expressed with XLOC-040580 during ZGA stage, and TPRA1 could interact with the promoter region of XLOC-040580 and regulate its expression. Knockdown of TPRA1 or XLOC-040580 blocked porcine embryonic development by affecting the expression of ZGA-related genes. We found and validated that lncRNA XLOC-040580 played a key role in the ZGA process, which was regulated by TPRA1. These results implied that the functional axis of TPRA1-XLOC-040580-downstream genes involved in ZGA-related functions also coordinated early embryonic development in porcine.
Collapse
Affiliation(s)
- Mengxin Liu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Enhong Li
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Haiyuan Mu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zimo Zhao
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xinze Chen
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jie Gao
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Dengfeng Gao
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhiyu Liu
- National-Local Associated Engineering Laboratory for Personalized Cell Therapy, Shenzhen, China
| | - Jianyong Han
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Liang Zhong
- Hebei Provincial Key Laboratory of Basic Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, China
| | - Suying Cao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
3
|
Nataraj K, Schonfeld M, Rodriguez A, Sharma M, Weinman S, Tikhanovich I. Androgen Effects on Alcohol-induced Liver Fibrosis Are Controlled by a Notch-dependent Epigenetic Switch. Cell Mol Gastroenterol Hepatol 2024; 19:101414. [PMID: 39349250 PMCID: PMC11609386 DOI: 10.1016/j.jcmgh.2024.101414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
BACKGROUND & AIMS Alcohol-associated liver disease (ALD) is a major cause of alcohol-related mortality. Sex is an important variable; however, the mechanism behind sex differences is not yet established. METHODS Kdm5b flox/flox Kdm5c flox male mice were subjected to gonadectomy or sham surgery. Mice were fed a Western diet and 20% alcohol in the drinking water for 18 weeks. To induce knockout, mice received 2 × 1011 genome copies of AAV8-CMV-Cre or AAV8-control. To test the role of Notch, mice were treated with 10 mg/kg of avagacestat for 4 weeks. RESULTS We found that Kdm5b/Kdm5c knockout promoted alcohol-induced liver disease, whereas gonadectomy abolished this effect, suggesting that male sex hormones promote liver disease in the absence of KDM5 demethylases. In contrast, in the thioacetamide-induced fibrosis model, male sex hormones showed a protective effect regardless of genotype. In human liver disease samples, we found that androgen receptor expression positively correlated with fibrosis levels when KDM5B levels were low and negatively when KDM5B was high, suggesting that a KDM5B-dependent epigenetic state defines the androgen receptor role in liver fibrosis. Using isolated cells, we found that this difference was due to the differential effect of testosterone on hepatic stellate cell activation in the absence or presence of KDM5B/KDM5C. Moreover, this effect was mediated by KDM5-dependent suppression of Notch signaling. In KDM5-deficient mice, Notch3 and Jag1 gene expression was induced, facilitating testosterone-mediated induction of Notch signaling and stellate cell activation. Inhibiting Notch with avagacestat greatly reduced liver fibrosis and abolished the effect of Kdm5b/Kdm5c loss. CONCLUSIONS Male sex hormone signaling can promote or prevent alcohol-associated liver fibrosis depending on the KDM5-dependent epigenetic state.
Collapse
Affiliation(s)
- Kruti Nataraj
- Department of Internal Medicine, Kansas City VA Medical Center, Kansas City, Missouri
| | - Michael Schonfeld
- Department of Internal Medicine, Kansas City VA Medical Center, Kansas City, Missouri
| | - Adriana Rodriguez
- Department of Internal Medicine, Kansas City VA Medical Center, Kansas City, Missouri
| | - Madhulika Sharma
- Department of Internal Medicine, Kansas City VA Medical Center, Kansas City, Missouri
| | - Steven Weinman
- Department of Internal Medicine, Kansas City VA Medical Center, Kansas City, Missouri; Kansas City VA Medical Center, Kansas City, Missouri
| | - Irina Tikhanovich
- Department of Internal Medicine, Kansas City VA Medical Center, Kansas City, Missouri.
| |
Collapse
|
4
|
Glanzner WG, da Silva Sousa LR, Gutierrez K, de Macedo MP, Currin L, Perecin F, Bordignon V. NRF2 attenuation aggravates detrimental consequences of metabolic stress on cultured porcine parthenote embryos. Sci Rep 2024; 14:2973. [PMID: 38316940 PMCID: PMC10844622 DOI: 10.1038/s41598-024-53480-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 01/31/2024] [Indexed: 02/07/2024] Open
Abstract
The nuclear factor erythroid 2-related factor 2 (NRF2) is a crucial transcription factor that plays a central role in regulating oxidative stress pathways by binding antioxidant response elements, but its involvement in early embryo development remains largely unexplored. In this study, we demonstrated that NRF2 mRNA is expressed in porcine embryos from day 2 to day 7 of development, showing a decrease in abundance from day 2 to day 3, followed by an increase on day 5 and day 7. Comparable levels of NRF2 mRNA were observed between early-cleaving and more developmental competent embryos and late-cleaving and less developmental competent embryos on day 4 and day 5 of culture. Attenuation of NRF2 mRNA significantly decreased development of parthenote embryos to the blastocyst stage. When NRF2-attenuated embryos were cultured in presence of 3.5 mM or 7 mM glucose, development to the blastocyst stage was dramatically decreased in comparison to the control group (15.9% vs. 27.8% for 3.5 mM glucose, and 5.4% vs. 25.3% for 7 mM glucose). Supplementation of melatonin moderately improved the development of NRF2-attenuated embryos cultured in presence of 0.6 mM glucose. These findings highlight the importance of NRF2 in early embryo development, particularly in embryos cultured under metabolically stressful conditions.
Collapse
Affiliation(s)
- Werner Giehl Glanzner
- Department of Animal Science, McGill University, 21111, Lakeshore Road, Sainte Anne de Bellevue, QC, H9X 3V9, Canada.
| | - Leticia Rabello da Silva Sousa
- Veterinary Medicine Department, College of Animal Science and Food Engineering, University of São Paulo (USP), Pirassununga, SP, Brazil
| | - Karina Gutierrez
- Department of Animal Science, McGill University, 21111, Lakeshore Road, Sainte Anne de Bellevue, QC, H9X 3V9, Canada
| | - Mariana Priotto de Macedo
- Department of Animal Science, McGill University, 21111, Lakeshore Road, Sainte Anne de Bellevue, QC, H9X 3V9, Canada
| | - Luke Currin
- Department of Animal Science, McGill University, 21111, Lakeshore Road, Sainte Anne de Bellevue, QC, H9X 3V9, Canada
| | - Felipe Perecin
- Veterinary Medicine Department, College of Animal Science and Food Engineering, University of São Paulo (USP), Pirassununga, SP, Brazil
| | - Vilceu Bordignon
- Department of Animal Science, McGill University, 21111, Lakeshore Road, Sainte Anne de Bellevue, QC, H9X 3V9, Canada.
| |
Collapse
|
5
|
Marsico TV, Silva MV, Valente RS, Annes K, Rissi VB, Glanzner WG, Sudano MJ. Unraveling the Consequences of Oxygen Imbalance on Early Embryo Development: Exploring Mitigation Strategies. Animals (Basel) 2023; 13:2171. [PMID: 37443969 DOI: 10.3390/ani13132171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Although well-established and adopted by commercial laboratories, the in vitro embryo production system still requires refinements to achieve its highest efficiency. Early embryonic development is a dynamic event, demanding suitable conditions to provide a high number of embryos with quality and competence. The first step to obtaining an optimized in vitro environment is to know the embryonic metabolism and energy request throughout the different stages of development. Oxygen plays a crucial role in several key biological processes necessary to sustain and complete embryonic development. Nonetheless, there is still controversy regarding the optimal in vitro atmospheric concentrations during culture. Herein, we discuss the impact of oxygen tension on the viability of in vitro-produced embryos during early development. The importance of oxygen tension is addressed as its roles regarding essential embryonic traits, including embryo production rates, embryonic cell viability, gene expression profile, epigenetic regulation, and post-cryopreservation survival. Finally, we highlight the damage caused by in vitro unbalanced oxygen tensions and strategies to mitigate the harmful effects.
Collapse
Affiliation(s)
- Thamiris Vieira Marsico
- Center for Natural and Human Sciences, Federal University of ABC, Santo André 09210-580, SP, Brazil
| | - Mara Viana Silva
- Center for Natural and Human Sciences, Federal University of ABC, Santo André 09210-580, SP, Brazil
| | - Roniele Santana Valente
- Center for Natural and Human Sciences, Federal University of ABC, Santo André 09210-580, SP, Brazil
| | - Kelly Annes
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil
| | - Vitor Braga Rissi
- Faculty of Veterinary Medicine, Federal University of Santa Catarina, UFSC, Curitibanos 89520-000, SC, Brazil
| | - Werner Giehl Glanzner
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Mateus José Sudano
- Center for Natural and Human Sciences, Federal University of ABC, Santo André 09210-580, SP, Brazil
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil
| |
Collapse
|
6
|
Yang Y, Cai Y, Guo J, Dai K, Liu L, Chen Z, Wang F, Deng M. Knockdown of KDM5B Leads to DNA Damage and Cell Cycle Arrest in Granulosa Cells via MTF1. Curr Issues Mol Biol 2023; 45:3219-3237. [PMID: 37185734 PMCID: PMC10136914 DOI: 10.3390/cimb45040210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023] Open
Abstract
KDM5B is essential for early embryo development, which is under the control of maternal factors in oocytes. Granulosa cells (GCs) play a critical role during oocyte mature. However, the role of KDM5B in GCs remains to be elucidated. In the current study, we found that KDM5B expressed highly in the ovaries and located in goat GCs. Using an RNA sequence, we identified 1353 differentially expressed genes in the KDM5B knockdown GCs, which were mainly enriched in cell cycle, cell division, DNA replication and the cellular oxidative phosphorylation regulation pathway. Moreover, we reported a decrease in the percentage of proliferated cells but an increase in the percentage of apoptotic cells in the KDM5B knockdown GCs. In addition, in the KDM5B knockdown GCs, the percentage of GCs blocked at the S phase was increased compared to the NC group, suggesting a critical role of KDM5B in the cell cycle. Moreover, in the KDM5B knockdown GCs, the reactive oxygen species level, the mitochondrial depolarization ratio, and the expression of intracellular phosphorylated histone H2AX (γH2AX) increased, suggesting that knockdown of KDM5B leads to DNA damage, primarily in the form of DNA double-strand breaks (DSBs). Interestingly, we found a down-regulation of MTF1 in the KDM5B knockdown GCs, and the level of cell proliferation, as well as the cell cycle block in the S phase, was improved. In contrast, in the group with both KDM5B knockdown and MTF1 overexpression, the level of ROS, the expression of γH2AX and the number of DNA DSB sites decreased. Taken together, our results suggest that KDM5B inhibits DNA damage and promotes the cell cycle in GCs, which might occur through the up-regulation of MTF1.
Collapse
Affiliation(s)
- Yingnan Yang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Cai
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinjing Guo
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Keke Dai
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Liang Liu
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Zili Chen
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingtian Deng
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
7
|
Glanzner WG, Rissi VB, Bordignon V. Somatic Cell Nuclear Transfer in Pigs. Methods Mol Biol 2023; 2647:197-210. [PMID: 37041336 DOI: 10.1007/978-1-0716-3064-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Somatic cell nuclear transfer (SCNT) has been successfully applied to clone animals of several species. Pigs are one of the main livestock species for food production and are also important for biomedical research due to their physiopathological similarities with humans. In the past 20 years, clones of several swine breeds have been produced for a variety of purposes, including biomedical and agricultural applications. In this chapter, we describe a protocol to produce cloned pigs by SCNT.
Collapse
Affiliation(s)
- Werner G Glanzner
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Vitor B Rissi
- Faculty of Veterinary Medicine, Federal University of Santa Catarina, UFSC, Curitibanos, SC, Brazil
| | - Vilceu Bordignon
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada.
| |
Collapse
|
8
|
Simultaneous Inhibition of Histone Deacetylases and RNA Synthesis Enables Totipotency Reprogramming in Pig SCNT Embryos. Int J Mol Sci 2022; 23:ijms232214142. [PMID: 36430635 PMCID: PMC9697165 DOI: 10.3390/ijms232214142] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Combining somatic cell nuclear transfer (SCNT) with genome editing technologies has emerged as a powerful platform for the creation of unique swine lineages for agricultural and biomedical applications. However, successful application of this research platform is still hampered by the low efficiency of these technologies, particularly in attaining complete cell reprogramming for the production of cloned pigs. Treating SCNT embryos with histone deacetylase inhibitors (HDACis), such as Scriptaid, has been routinely used to facilitate chromatin reprogramming after nuclear transfer. While increasing histone acetylation leads to a more relaxed chromatin configuration that facilitates the access of reprogramming factors and DNA repair machinery, it may also promote the expression of genes that are unnecessary or detrimental for normal embryo development. In this study, we evaluated the impact of inhibiting both histone deacetylases and RNA synthesis on pre- and post-implantation development of pig SCNT embryos. Our findings revealed that transcription can be inhibited for up to 40 h of development in porcine embryos, produced either by activation, fertilization or SCNT, without detrimentally affecting their capacity to form a blastocyst and their average number of cells at this developmental stage. Importantly, inhibiting RNA synthesis during HDACi treatment resulted in SCNT blastocysts with a greater number of cells and more abundant transcripts for genes related to embryo genome activation on days 2, 3 and 4 of development, compared to SCNT embryos that were treated with HDACi only. In addition, concomitant inhibition of histone deacetylases and RNA synthesis promoted the full reprograming of somatic cells, as evidenced by the normal fetal and full-term development of SCNT embryos. This combined treatment may improve the efficiency of the genome-editing + SCNT platform in swine, which should be further tested by transferring more SCNT embryos and evaluating the health and growth performance of the cloned pigs.
Collapse
|
9
|
da Silva Z, Glanzner WG, Currin L, de Macedo MP, Gutierrez K, Guay V, Gonçalves PBD, Bordignon V. DNA Damage Induction Alters the Expression of Ubiquitin and SUMO Regulators in Preimplantation Stage Pig Embryos. Int J Mol Sci 2022; 23:ijms23179610. [PMID: 36077022 PMCID: PMC9455980 DOI: 10.3390/ijms23179610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/17/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022] Open
Abstract
DNA damage in early-stage embryos impacts development and is a risk factor for segregation of altered genomes. DNA damage response (DDR) encompasses a sophisticated network of proteins involved in sensing, signaling, and repairing damage. DDR is regulated by reversible post-translational modifications including acetylation, methylation, phosphorylation, ubiquitylation, and SUMOylation. While important regulators of these processes have been characterized in somatic cells, their roles in early-stage embryos remain broadly unknown. The objective of this study was to explore how ubiquitylation and SUMOylation are involved in the regulation of early development in porcine embryos by assessing the mRNA profile of genes encoding ubiquitination (UBs), deubiquitination (DUBs), SUMOylation (SUMOs) or deSUMOylation (deSUMOs) enzymes in oocyte and embryos at different stages of development, and to evaluate if the induction of DNA damage at different stages of embryo development would alter the mRNA abundance of these genes. Pig embryos were produced by in vitro fertilization and DNA damage was induced by ultraviolet (UV) light exposure for 10 s on days 2, 4 or 7 of development. The relative mRNA abundance of most UBs, DUBs, SUMOs, and deSUMOs was higher in oocytes and early-stage embryos than in blastocysts. Transcript levels for UBs (RNF20, RNF40, RNF114, RNF169, CUL5, DCAF2, DECAF13, and DDB1), DUBs (USP16), and SUMOs (CBX4, UBA2 and UBC9), were upregulated in early-stage embryos (D2 and/or D4) compared to oocytes and blastocysts. In response to UV-induced DNA damage, transcript levels of several UBs, DUBs, SUMOs, and deSUMOs decreased in D2 and D4 embryos, but increased in blastocysts. These findings revealed that transcript levels of genes encoding for important UBs, DUBs, SUMOs, and deSUMOs are regulated during early embryo development and are modulated in response to induced DNA damage. This study has also identified candidate genes controlling post-translational modifications that may have relevant roles in the regulation of normal embryo development, repair of damaged DNA, and preservation of genome stability in the pig embryo.
Collapse
Affiliation(s)
- Zigomar da Silva
- Laboratory of Biotechnology and Animal Reproduction–BioRep, Federal University of Santa Maria, Santa Maria 97105-900, Brazil
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Werner Giehl Glanzner
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Luke Currin
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | | | - Karina Gutierrez
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Vanessa Guay
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Paulo Bayard Dias Gonçalves
- Laboratory of Biotechnology and Animal Reproduction–BioRep, Federal University of Santa Maria, Santa Maria 97105-900, Brazil
| | - Vilceu Bordignon
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
- Correspondence: ; Tel.: +1-514-398-7793
| |
Collapse
|
10
|
Glanzner WG, de Macedo MP, Gutierrez K, Bordignon V. Enhancement of Chromatin and Epigenetic Reprogramming in Porcine SCNT Embryos—Progresses and Perspectives. Front Cell Dev Biol 2022; 10:940197. [PMID: 35898400 PMCID: PMC9309298 DOI: 10.3389/fcell.2022.940197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022] Open
Abstract
Over the last 25 years, cloned animals have been produced by transferring somatic cell nuclei into enucleated oocytes (SCNT) in more than 20 mammalian species. Among domestic animals, pigs are likely the leading species in the number of clones produced by SCNT. The greater interest in pig cloning has two main reasons, its relevance for food production and as its use as a suitable model in biomedical applications. Recognized progress in animal cloning has been attained over time, but the overall efficiency of SCNT in pigs remains very low, based on the rate of healthy, live born piglets following embryo transfer. Accumulating evidence from studies in mice and other species indicate that new strategies for promoting chromatin and epigenetic reprogramming may represent the beginning of a new era for pig cloning.
Collapse
|
11
|
Schonfeld M, Averilla J, Gunewardena S, Weinman SA, Tikhanovich I. Male-Specific Activation of Lysine Demethylases 5B and 5C Mediates Alcohol-Induced Liver Injury and Hepatocyte Dedifferentiation. Hepatol Commun 2022; 6:1373-1391. [PMID: 35084807 PMCID: PMC9134811 DOI: 10.1002/hep4.1895] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/13/2021] [Accepted: 12/22/2021] [Indexed: 12/11/2022] Open
Abstract
Alcohol-associated liver disease (ALD) is a major cause of alcohol-related mortality. Sex differences in sensitivity to ALD are well described, but these are often disregarded in studies of ALD development. We aimed to define sex-specific pathways in liver exposed to alcohol. Mice were fed the Lieber-DeCarli alcohol liquid diet or a combination of a high-fat diet with alcohol in water. Single-cell RNA sequencing (scRNA-Seq) was performed on liver cells from male and female mice. Mice were treated with adeno-associated virus (AAV)-short hairpin (sh)Control or AAV-sh lysine demethylase 5b (shKdm5b) and/or AAV-shKdm5c vectors. Changes after Kdm5b/5c knockdown were assessed by RNA-Seq and histone H3 lysine K4 (H3K4)me3 chromatin immunoprecipitation-Seq analysis. Using scRNA-Seq analysis, we found several sex-specific pathways induced by alcohol, including pathways related to lipid metabolism and hepatocyte differentiation. Bioinformatic analysis suggested that two epigenetic regulators, H3K4-specific lysine demethylases KDM5B and KDM5C, contribute to sex differences in alcohol effects. We found that in alcohol-fed male mice, KDM5B and KDM5C are involved in hepatocyte nuclear factor 4 alpha (Hnf4a) down-regulation, hepatocyte dedifferentiation, and an increase in fatty acid synthesis. This effect is mediated by alcohol-induced KDM5B and KDM5C recruitment to Hnf4a and other gene promoters in male but not in female mice. Kdm5b and Kdm5c knockdown or KDM5-inhibitor treatment prevented alcohol-induced lipid accumulation and restored levels of Hnf4a and other hepatocyte differentiation genes in male mice. In addition, Kdm5b knockdown prevented hepatocellular carcinoma development in male mice by up-regulating Hnf4a and decreasing tumor cell proliferation. Conclusion: Alcohol specifically activates KDM5 demethylases in male mice to promote alcohol-induced hepatocyte dedifferentiation and tumor development.
Collapse
Affiliation(s)
- Michael Schonfeld
- Department of Internal MedicineUniversity of Kansas Medical CenterKansas CityKSUSA
| | - Janice Averilla
- Department of Internal MedicineUniversity of Kansas Medical CenterKansas CityKSUSA
| | - Sumedha Gunewardena
- Department of Molecular and Integrative PhysiologyUniversity of Kansas Medical CenterKansas CityKSUSA
| | - Steven A. Weinman
- Department of Internal MedicineUniversity of Kansas Medical CenterKansas CityKSUSA
- Liver CenterUniversity of Kansas Medical CenterKansas CityKSUSA
- Kansas City VA Medical CenterKansas CityMOUSA
| | - Irina Tikhanovich
- Department of Internal MedicineUniversity of Kansas Medical CenterKansas CityKSUSA
| |
Collapse
|
12
|
Song H, Shen R, Liu X, Yang X, Xie K, Guo Z, Wang D. Histone post-translational modification and the DNA damage response. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
13
|
Qian X, Bao ZM, Yao D, Shi Y. Lysine demethylase 5C epigenetically reduces transcription of ITIH1 that results in augmented progression of liver hepatocellular carcinoma. Kaohsiung J Med Sci 2022; 38:437-446. [PMID: 35080113 DOI: 10.1002/kjm2.12501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/09/2021] [Accepted: 12/17/2021] [Indexed: 12/24/2022] Open
Abstract
Lysine demethylase 5C (KDM5C) is a member of the KDM family of demethylases and has been reported as a cancer driver. This study aimed to probe the function of KDM5C in the development of liver hepatocellular carcinoma (LIHC) and the molecules of action. According to data from publicly accessible bioinformatic databases, KDM5C is highly expressed in LIHC and associated with poor patient prognosis. High expression of KDM5C was detected in acquired LIHC cell lines. Downregulation of KDM5C weakened proliferation, migration, invasiveness, and resistance to death of the LIHC cells in vitro, and it reduced growth of the xenograft tumors in nude mice. Inter-alpha-trypsin inhibitor heavy chain 1 (ITIH1) was predicted as a downstream gene negatively regulated by KDM5C. KDM5C-regulated H3K4me1 modification at the promoter region of ITIH1, inducing its transcriptional inactivation. Further downregulation of ITIH1 in cancer cells blocked the functions of KDM5C silencing and restored the malignant behaviors of LIHC cells. The activity of the PI3K/AKT signaling was decreased following KDM5C downregulation but recovered upon ITIH1 silencing. In conclusion, this study suggested that KDM5C epigenetically reduces ITIH1 and activates the PI3K/AKT signaling pathway to promote LIHC progression.
Collapse
Affiliation(s)
- Xu Qian
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China.,Department of Thyroid and Breast Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, P.R. China
| | - Zhong-Ming Bao
- Department of Hepatobiliary Surgery, Huaiyin People's Hospital, Huaiyin, Jiangsu, P.R. China
| | - Dan Yao
- Department of Gastrointestinal Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, P.R. China
| | - Yang Shi
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| |
Collapse
|
14
|
de Macedo MP, Glanzner WG, Gutierrez K, Bordignon V. Chromatin role in early programming of embryos. Anim Front 2021; 11:57-65. [PMID: 34934530 PMCID: PMC8683133 DOI: 10.1093/af/vfab054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
| | - Werner Giehl Glanzner
- Department of Animal Science, McGill University, Sainte Anne de Bellevue, QC, Canada
| | - Karina Gutierrez
- Department of Animal Science, McGill University, Sainte Anne de Bellevue, QC, Canada
| | - Vilceu Bordignon
- Department of Animal Science, McGill University, Sainte Anne de Bellevue, QC, Canada
| |
Collapse
|
15
|
Ferst JG, Glanzner WG, Gutierrez K, de Macedo MP, Ferreira R, Gasperin BG, Duggavathi R, Gonçalves PB, Bordignon V. Supplementation of oleic acid, stearic acid, palmitic acid and β-hydroxybutyrate increase H3K9me3 in endometrial epithelial cells of cattle cultured in vitro. Anim Reprod Sci 2021; 233:106851. [PMID: 34560342 DOI: 10.1016/j.anireprosci.2021.106851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022]
Abstract
There is growing evidence that greater than homeostatic blood concentrations of nonesterified fatty acids (NEFAs) and β-hydroxybutyrate (BHBA) have negative consequences on dairy cow's fertility, but effects on cell homeostasis in the reproductive system is not completely understood. In this study, lipids accumulation, reactive oxygen species (ROS) concentrations, abundance of gene transcripts, and immunofluorescence signal of H3K4me3 and H3K9me3 were evaluated in endometrial epithelial cells of cattle cultured with NEFAs (Oleic (OA), Stearic (SA) and Palmitic (PA) acids), BHBA, NEFAs + BHBA or each of the three NEFAs alone. The cellular lipids were in greater concentrations as a result of NEFAs + BHBA, NEFAs, SA or OA supplementation, but not by BHBA or PA. The ROS concentrations were greater when there were treatments with NEFAs + BHBA, NEFAs or BHBA. The relative mRNA abundance for genes involved in the regulation of apoptosis (XIAP), glucose transport (GLUT3), and DNA methylation (DNMT1) were greater when there were NEFAs + BHBA, but not NEFAs, BHBA, OA, SA or PA treatments. The immunofluorescence signal for H3K9me3 was greater when there were NEFAs + BHBA, NEFAs or PA, but not by BHBA, OA or SA treatments. These findings indicate that NEFAs and BHBA have an additive effect on endometrial cells of cattle by altering epigenetic markers and the expression of genes controlling important cellular pathways. Furthermore, there was cellular lipid accumulation and increased H3K9me3 in cultured bovine endometrial cells that was mainly induced by OA and PA treatments, respectively.
Collapse
Affiliation(s)
- Juliana G Ferst
- Laboratory of Biotechnology and Animal Reproduction - BioRep, Federal University of Santa Maria, Santa Maria, RS, Brazil; Department of Animal Science, McGill University, Saint-Anne-de-Bellevue, QC, Canada.
| | - Werner G Glanzner
- Department of Animal Science, McGill University, Saint-Anne-de-Bellevue, QC, Canada.
| | - Karina Gutierrez
- Department of Animal Science, McGill University, Saint-Anne-de-Bellevue, QC, Canada.
| | - Mariana P de Macedo
- Department of Animal Science, McGill University, Saint-Anne-de-Bellevue, QC, Canada.
| | - Rogério Ferreira
- Department of Animal Production, Santa Catarina State University, Lages, SC, Brazil.
| | - Bernardo G Gasperin
- Department of Animal Pathology, Federal University of Pelotas, Capão do Leão, RS, Brazil.
| | - Raj Duggavathi
- Department of Animal Science, McGill University, Saint-Anne-de-Bellevue, QC, Canada.
| | - Paulo Bayard Gonçalves
- Laboratory of Biotechnology and Animal Reproduction - BioRep, Federal University of Santa Maria, Santa Maria, RS, Brazil; Molecular and Integrative Physiology of Reproduction Laboratory, MINT, Federal University of Pampa, Uruguaiana, RS, Brazil.
| | - Vilceu Bordignon
- Department of Animal Science, McGill University, Saint-Anne-de-Bellevue, QC, Canada.
| |
Collapse
|
16
|
Cuthbert JM, Russell SJ, Polejaeva IA, Meng Q, White KL, Benninghoff AD. Comparing mRNA and sncRNA profiles during the maternal-to-embryonic transition in bovine IVF and scNT embryos. Biol Reprod 2021; 105:1401-1415. [PMID: 34514499 DOI: 10.1093/biolre/ioab169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/09/2021] [Accepted: 09/02/2021] [Indexed: 12/14/2022] Open
Abstract
Production of embryos with high developmental competence by somatic cell nuclear transfer (scNT) is far less efficient than for in vitro fertilized (IVF) embryos, likely due to an accumulation of errors in genome reprogramming that results in aberrant expression of RNA transcripts, including messenger RNAs (mRNA) and, possibly, microRNAs (miRNA). Thus, our objectives were to use RNAseq to determine the dynamics of mRNA expression in early developing scNT and IVF embryos in the context of the maternal-to-embryonic transition (MET) and to correlate apparent transcriptional dysregulation in cloned embryos with miRNA expression profiles. Comparisons between scNT and IVF embryos indicated large scale transcriptome differences, which were most evident at the 8-cell and morula stages for genes associated with biological functions critical for the MET. For two miRNAs previously identified as differentially expressed in scNT morulae, miR-34a and miR-345, negative correlations with some predicted mRNA targets were apparent, though not widespread among the majority of predicted targets. Moreover, although large-scale aberrations in expression of mRNAs were evident during the MET in cattle scNT embryos, these changes were not consistently correlated with aberrations in miRNA expression at the same developmental stage, suggesting that other mechanisms controlling gene expression may be involved.
Collapse
Affiliation(s)
- Jocelyn M Cuthbert
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, Utah 84322, USA
| | - Stewart J Russell
- CReATe Fertility Centre, 790 Bay St. #1100, Toronto, M5G 1N8, Canada
| | - Irina A Polejaeva
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, Utah 84322, USA
| | - Qinggang Meng
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, Utah 84322, USA
| | - Kenneth L White
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, Utah 84322, USA
| | - Abby D Benninghoff
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, Utah 84322, USA
| |
Collapse
|
17
|
Feng Y, Zhao X, Li Z, Luo C, Ruan Z, Xu J, Shen P, Deng Y, Jiang J, Shi D, Lu F. Histone Demethylase KDM4D Could Improve the Developmental Competence of Buffalo ( Bubalus Bubalis) Somatic Cell Nuclear Transfer (SCNT) Embryos. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 27:409-419. [PMID: 33478599 DOI: 10.1017/s1431927620024964] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Somatic cell nuclear transfer (SCNT) holds vast potential in agriculture. However, its applications are still limited by its low efficiency. Histone 3 lysine 9 trimethylation (H3K9me3) was identified as an epigenetic barrier for this. Histone demethylase KDM4D could regulate the level of H3K9me3. However, its effects on buffalo SCNT embryos are still unclear. Thus, we performed this study to explore the effects and underlying mechanism of KDM4D on buffalo SCNT embryos. The results revealed that compared with the IVF embryos, the expression level of KDM4D in SCNT embryos was significantly lower at 8- and 16-cell stage, while the level of H3K9me3 in SCNT embryos was significantly higher at 2-cell, 8-cell, and blastocyst stage. Microinjection of KDM4D mRNA could promote the developmental ability of buffalo SCNT embryos. Furthermore, the expression level of ZGA-related genes such as ZSCAN5B, SNAI1, eIF-3a, and TRC at the 8-cell stage was significantly increased. Meanwhile, the pluripotency-related genes like POU5F1, SOX2, and NANOG were also significantly promoted at the blastocyst stage. The results were reversed after KDM4D was inhibited. Altogether, these results revealed that KDM4D could correct the H3K9me3 level, increase the expression level of ZGA and pluripotency-related genes, and finally, promote the developmental competence of buffalo SCNT embryos.
Collapse
Affiliation(s)
- Yun Feng
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning530005, P.R. China
| | - Xin Zhao
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning530005, P.R. China
- Center of Reproductive Medicine, Guangxi Maternal and Child Health Hospital, Nanning530003, P.R. China
| | - Zhengda Li
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning530005, P.R. China
| | - Chan Luo
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning530005, P.R. China
| | - Ziyun Ruan
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning530005, P.R. China
| | - Jie Xu
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning530005, P.R. China
| | - Penglei Shen
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning530005, P.R. China
| | - Yanfei Deng
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning530005, P.R. China
| | - Jianrong Jiang
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning530005, P.R. China
| | - Deshun Shi
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning530005, P.R. China
| | - Fenghua Lu
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning530005, P.R. China
| |
Collapse
|
18
|
Zhang Q, Xu L, Wang J, Zhu X, Ma Z, Yang J, Li J, Jia X, Wei L. KDM5C Expedites Lung Cancer Growth and Metastasis Through Epigenetic Regulation of MicroRNA-133a. Onco Targets Ther 2021; 14:1187-1204. [PMID: 33654410 PMCID: PMC7910089 DOI: 10.2147/ott.s288799] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/12/2021] [Indexed: 12/24/2022] Open
Abstract
Background KDM5C, a histone H3K4-specific demethylase, possess various biological functions in development of cancers. However, its relation to the microRNA (miRNA) regulation in lung cancer remains unknown. This study aims to study the regulatory role of KDM5C on modification of miR-133a in the progression of lung cancer. Methods Differentially expressed miRNAs were filtered from 34 paired lung cancer and paracancerous tissues. The correlation between miR-133a expression and the prognosis of lung cancer patients was determined by a bioinformatics website. Furthermore, malignant aggressiveness of lung cancer cells was detected after miR-133a upregulation by CCK-8, flow cytometry, and Transwell assays and in vivo tumorigenesis and metastasis experiments. Subsequently, we analyzed mRNA downregulated in cells overexpressing miR-133a using m microarray analysis and expounded the upstream regulatory mechanism of miR-133a using bioinformatics website prediction and functional validation. Results miR-133a was reduced in lung cancer tissues, and patients with low expression of miR-133a have worse survival rates. miR-133a restoration curtailed growth and metastasis of lung cancer cells in vitro and in vivo. Moreover, miR-133a downregulated PTBP1 expression, whereas overexpression of PTBP1 attenuated the suppressive effect of miR-133a on lung cancer cell aggressiveness. The level of methylation modification of miR-133a was reduced in lung cancer cells. KDM5C inhibited the expression of miR-133a by promoting the demethylation modification of its promoter histone. Conclusion Histone demethylase KDM5C inhibits the expression of miR-133a by elevating the demethylation modification of the promoter histone of miR-133a, thereby promoting the expression of PTBP1, which finally accelerates lung cancer cell growth and metastasis.
Collapse
Affiliation(s)
- Quan Zhang
- Department of Thoracic Surgery, Zhengzhou Key Laboratory of Surgical Treatment for End-Stage Lung Diseases, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| | - Lei Xu
- Department of Thoracic Surgery, Zhengzhou Key Laboratory of Surgical Treatment for End-Stage Lung Diseases, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| | - Jianjun Wang
- Department of Thoracic Surgery, Zhengzhou Key Laboratory of Surgical Treatment for End-Stage Lung Diseases, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| | - Xiaoming Zhu
- Department of Thoracic Surgery, Zhengzhou Key Laboratory of Surgical Treatment for End-Stage Lung Diseases, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| | - Zeheng Ma
- Department of Thoracic Surgery, Zhengzhou Key Laboratory of Surgical Treatment for End-Stage Lung Diseases, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| | - Junfeng Yang
- Department of Thoracic Surgery, Zhengzhou Key Laboratory of Surgical Treatment for End-Stage Lung Diseases, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| | - Jiwei Li
- Department of Thoracic Surgery, Zhengzhou Key Laboratory of Surgical Treatment for End-Stage Lung Diseases, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| | - Xiangbo Jia
- Department of Thoracic Surgery, Zhengzhou Key Laboratory of Surgical Treatment for End-Stage Lung Diseases, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| | - Li Wei
- Department of Thoracic Surgery, Zhengzhou Key Laboratory of Surgical Treatment for End-Stage Lung Diseases, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| |
Collapse
|
19
|
Liu B, Kumar R, Chao HP, Mehmood R, Ji Y, Tracz A, Tang DG. Evidence for context-dependent functions of KDM5B in prostate development and prostate cancer. Oncotarget 2020; 11:4243-4252. [PMID: 33245716 PMCID: PMC7679033 DOI: 10.18632/oncotarget.27818] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/29/2020] [Indexed: 01/09/2023] Open
Abstract
Prostate cancer (PCa) is one of the leading causes of cancer-related deaths worldwide. Prostate tumorigenesis and PCa progression involve numerous genetic as well as epigenetic perturbations. Histone modification represents a fundamental epigenetic mechanism that regulates diverse cellular processes, and H3K4 methylation, one such histone modification associated with active transcription, can be reversed by dedicated histone demethylase KDM5B (JARID1B). Abnormal expression and functions of KDM5B have been implicated in several cancer types including PCa. Consistently, our bioinformatics analysis reveals that the KDM5B mRNA levels are upregulated in PCa compared to benign prostate tissues, and correlate with increased tumor grade and poor patient survival, supporting an oncogenic function of KDM5B in PCa. Surprisingly, however, when we generated prostate-specific conditional Kdm5b knockout mice using probasin (Pb) promoter-driven Cre: loxP system, we observed that Kdm5b deletion did not affect normal prostate development but instead induced mild hyperplasia. These results suggest that KDM5B may possess context-dependent roles in normal prostate development vs. PCa development and progression.
Collapse
Affiliation(s)
- Bigang Liu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D Anderson Cancer Center, Science Park, Smithville, TX, USA
- These authors contributed equally to this work
| | - Rahul Kumar
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- These authors contributed equally to this work
| | - Hseuh-Ping Chao
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D Anderson Cancer Center, Science Park, Smithville, TX, USA
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Rashid Mehmood
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Life Sciences, College of Science and General Studies, Alfaisal University, Takhasusi Street, Riyadh, Saudi Arabia
| | - Yibing Ji
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D Anderson Cancer Center, Science Park, Smithville, TX, USA
| | - Amanda Tracz
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D Anderson Cancer Center, Science Park, Smithville, TX, USA
| | - Dean G. Tang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D Anderson Cancer Center, Science Park, Smithville, TX, USA
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| |
Collapse
|
20
|
Deng M, Chen B, Liu Z, Cai Y, Wan Y, Zhang G, Fan Y, Zhang Y, Wang F. YTHDF2 Regulates Maternal Transcriptome Degradation and Embryo Development in Goat. Front Cell Dev Biol 2020; 8:580367. [PMID: 33117808 PMCID: PMC7552740 DOI: 10.3389/fcell.2020.580367] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/10/2020] [Indexed: 02/05/2023] Open
Abstract
Maternal mRNA clearance is critical for the early embryo development, which is under the tight control of RNA N6-methyladenosine (m6A). However, little information is known regarding the maternal mRNA clearance and mechanisms behind it in farm animals. In the present study, 3362 differentially expressed genes (DEGs) were found during the maternal-to-zygotic transition (MZT) and determined as maternal mRNAs in goat. Of which, 1961 was decreased at the 4-cell stage embryos, while 1401 was trigged down-regulation at the 8-cell stage embryos, which were termed as maternally encoded mRNA decay genes and zygotic genome activation (ZGA)-dependent maternal mRNAs, respectively. The expression of m6A reader YTHDF2 was increased during goat ZGA, and knockdown of YTHDF2 resulted in decreased blastocyst rate. In the 8-cell stage YTHDF2 knockdown embryos, the M-decay and Z-decay maternal mRNA clearance were impaired. Specifically, the expression of deadenylase (CNOT1 and CNOT11) and decapping enzymes (DCP1A and DCP2) was decreased. In conclusion, we ascertained maternal mRNAs and inferred that maternal mRNA clearance is also ZGA-dependent in goat. We reported that YTHDF2 is vital for goat early embryogenesis as it advances maternal mRNA clearance, which might through the recruitment of deadenylases and mRNA decapping enzymes. This work will be of great value for understanding the stochastic reprogramming events during MZT and achieving better development of goat embryos in vitro.
Collapse
Affiliation(s)
- Mingtian Deng
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - BaoBao Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zifei Liu
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yu Cai
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yongjie Wan
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Guomin Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yixuan Fan
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yanli Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|