1
|
Stratigi K, Siametis A, Garinis GA. Looping forward: exploring R-loop processing and therapeutic potential. FEBS Lett 2025; 599:244-266. [PMID: 38844597 PMCID: PMC11771710 DOI: 10.1002/1873-3468.14947] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 01/28/2025]
Abstract
Recently, there has been increasing interest in the complex relationship between transcription and genome stability, with specific attention directed toward the physiological significance of molecular structures known as R-loops. These structures arise when an RNA strand invades into the DNA duplex, and their formation is involved in a wide range of regulatory functions affecting gene expression, DNA repair processes or cell homeostasis. The persistent presence of R-loops, if not effectively removed, contributes to genome instability, underscoring the significance of the factors responsible for their resolution and modification. In this review, we provide a comprehensive overview of how R-loop processing can drive either a beneficial or a harmful outcome. Additionally, we explore the potential for manipulating such structures to devise rationalized therapeutic strategies targeting the aberrant accumulation of R-loops.
Collapse
Affiliation(s)
- Kalliopi Stratigi
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology‐HellasHeraklionCreteGreece
| | - Athanasios Siametis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology‐HellasHeraklionCreteGreece
- Department of BiologyUniversity of CreteHeraklionCreteGreece
| | - George A. Garinis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology‐HellasHeraklionCreteGreece
- Department of BiologyUniversity of CreteHeraklionCreteGreece
| |
Collapse
|
2
|
Takemon Y, Pleasance ED, Gagliardi A, Hughes CS, Csizmok V, Wee K, Trinh DL, Huff RD, Mungall AJ, Moore RA, Chuah E, Mungall KL, Lewis E, Nelson J, Lim HJ, Renouf DJ, Jones SJ, Laskin J, Marra MA. Mapping in silico genetic networks of the KMT2D tumour suppressor gene to uncover novel functional associations and cancer cell vulnerabilities. Genome Med 2024; 16:136. [PMID: 39578878 PMCID: PMC11583415 DOI: 10.1186/s13073-024-01401-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/29/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Loss-of-function (LOF) alterations in tumour suppressor genes cannot be directly targeted. Approaches characterising gene function and vulnerabilities conferred by such mutations are required. METHODS Here, we computationally map genetic networks of KMT2D, a tumour suppressor gene frequently mutated in several cancer types. Using KMT2D loss-of-function (KMT2DLOF) mutations as a model, we illustrate the utility of in silico genetic networks in uncovering novel functional associations and vulnerabilities in cancer cells with LOF alterations affecting tumour suppressor genes. RESULTS We revealed genetic interactors with functions in histone modification, metabolism, and immune response and synthetic lethal (SL) candidates, including some encoding existing therapeutic targets. Notably, we predicted WRN as a novel SL interactor and, using recently available WRN inhibitor (HRO761 and VVD-133214) treatment response data, we observed that KMT2D mutational status significantly distinguishes treatment-sensitive MSI cell lines from treatment-insensitive MSI cell lines. CONCLUSIONS Our study thus illustrates how tumour suppressor gene LOF alterations can be exploited to reveal potentially targetable cancer cell vulnerabilities.
Collapse
Affiliation(s)
- Yuka Takemon
- Genome Science and Technology Graduate Program, University of British Columbia, Vancouver, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| | - Erin D Pleasance
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| | - Alessia Gagliardi
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| | | | - Veronika Csizmok
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| | - Kathleen Wee
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| | - Diane L Trinh
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| | - Ryan D Huff
- Division of Respiratory Medicine, Department of Medicine, Air Pollution Exposure Laboratory, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Andrew J Mungall
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| | - Richard A Moore
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| | - Eric Chuah
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| | - Karen L Mungall
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| | - Eleanor Lewis
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| | - Jessica Nelson
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| | - Howard J Lim
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Daniel J Renouf
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
- Pancreas Centre BC, Vancouver, BC, Canada
| | - Steven Jm Jones
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Janessa Laskin
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Marco A Marra
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada.
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada.
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
3
|
Lafuente-Barquero J, Svejstrup JQ, Luna R, Aguilera A. Expression of human RECQL5 in Saccharomyces cerevisiae causes transcription defects and transcription-associated genome instability. Mol Genet Genomics 2024; 299:59. [PMID: 38796829 PMCID: PMC11128410 DOI: 10.1007/s00438-024-02152-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
RECQL5 is a member of the conserved RecQ family of DNA helicases involved in the maintenance of genome stability that is specifically found in higher eukaryotes and associates with the elongating RNA polymerase II. To expand our understanding of its function we expressed human RECQL5 in the yeast Saccharomyces cerevisiae, which does not have a RECQL5 ortholog. We found that RECQL5 expression leads to cell growth inhibition, increased genotoxic sensitivity and transcription-associated hyperrecombination. Chromatin immunoprecipitation and transcriptomic analysis of yeast cells expressing human RECQL5 shows that this is recruited to transcribed genes and although it causes only a weak impact on gene expression, in particular at G + C-rich genes, it leads to a transcription termination defect detected as readthrough transcription. The data indicate that the interaction between RNAPII and RECQL5 is conserved from yeast to humans. Unexpectedly, however, the RECQL5-ID mutant, previously shown to have reduced the association with RNAPII in vitro, associates with the transcribing polymerase in cells. As a result, expression of RECQL5-ID leads to similar although weaker phenotypes than wild-type RECQL5 that could be transcription-mediated. Altogether, the data suggests that RECQL5 has the intrinsic ability to function in transcription-dependent and independent genome dynamics in S. cerevisiae.
Collapse
Affiliation(s)
- Juan Lafuente-Barquero
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, 41092, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012, Seville, Spain
| | - Jesper Q Svejstrup
- University of Copenhagen, Copenhagen, Denmark
- Francis Crick Institute, London, UK
| | - Rosa Luna
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, 41092, Seville, Spain.
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012, Seville, Spain.
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, 41092, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012, Seville, Spain
| |
Collapse
|
4
|
Tayanloo-Beik A, Hamidpour SK, Nikkhah A, Arjmand R, Mafi AR, Rezaei-Tavirani M, Larijani B, Gilany K, Arjmand B. DNA Damage Responses, the Trump Card of Stem Cells in the Survival Game. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1470:165-188. [PMID: 37923882 DOI: 10.1007/5584_2023_791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
Stem cells, as a group of undifferentiated cells, are enriched with self-renewal and high proliferative capacity, which have attracted the attention of many researchers as a promising approach in the treatment of many diseases over the past years. However, from the cellular and molecular point of view, the DNA repair system is one of the biggest challenges in achieving therapeutic goals through stem cell technology. DNA repair mechanisms are an advantage for stem cells that are constantly multiplying to deal with various types of DNA damage. However, this mechanism can be considered a trump card in the game of cell survival and treatment resistance in cancer stem cells, which can hinder the curability of various types of cancer. Therefore, getting a deep insight into the DNA repair system can bring researchers one step closer to achieving major therapeutic goals. The remarkable thing about the DNA repair system is that this system is not only under the control of genetic factors, but also under the control of epigenetic factors. Therefore, it is necessary to investigate the role of the DNA repair system in maintaining the survival of cancer stem cells from both aspects.
Collapse
Affiliation(s)
- Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Amirabbas Nikkhah
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Rasta Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Rezazadeh Mafi
- Department of Radiation Oncology, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical sciences, Tehran, Iran
| | - Kambiz Gilany
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Yao S, Yuan Y, Zhang J, Yu Y, Luo GH. Gene polymorphisms associated with sudden decreases in heart rate during extensive peritoneal lavage with distilled water after gastrectomy. World J Gastrointest Surg 2023; 15:2154-2170. [PMID: 37969699 PMCID: PMC10642470 DOI: 10.4240/wjgs.v15.i10.2154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/04/2023] [Accepted: 08/17/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Our previous study found that the telomerase-associated protein 1 (TEP1, rs938886 and rs1713449) and homo sapiens RecQ like helicase 5 (RECQL5, rs820196) single nucleotide polymorphisms (SNPs) were associated with changes in heart rate (HR) ≥ 30% during peritoneal lavage with distilled water after gastrectomy. This study established a single tube method for detecting these three SNPs using two-dimensional (2D) polymerase chain reaction (PCR), and investigated whether SNP-SNP and SNP-environment interactions increase the risk of high HR variability (HRV). AIM To investigate whether genotypes, genetic patterns, SNP-SNP and SNP-environment interactions were associated with HRV. METHODS 2D PCR was used to establish a single-tube method to detect TEP1 rs938886 and rs1713449 and RECQL5 rs820196, and the results were compared with those of sanger sequencing. After adjusting for confounders such as age, sex, smoking, hypertension, and thyroid dysfunction, a nonconditional logistic regression model was used to assess the associations between the genotypes and the genetic patterns (codominant, dominant, overdominant, recessive, and additive) of the three SNPs and a risk ≥ 15% or ≥ 30% of a sudden drop in HR during postoperative peritoneal lavage in patients with gastric cancer. Gene-gene and gene-environment interactions were analyzed using generalized multifactor dimensionality reduction. RESULTS The coincidence rate between the 2D PCR and sequencing was 100%. When the HRV cutoff value was 15%, the patients with the RECQL5 (rs820196) TC genotype had a higher risk of high HRV than those who had the TT genotype (odds ratio = 1.97; 95%CI: 1.05-3.70; P = 0.045). Under the codominant and overdominant models, the TC genotype of RECQL5 (rs820196) was associated with a higher risk of HR decrease relative to the TT and TT + CC genotypes (P = 0.031 and 0.016, respectively). When the HRV cutoff value was 30%, patients carrying the GC-TC genotypes of rs938886 and rs820196 showed a higher HRV risk when compared with the GG-TT genotype carriers (P = 0.01). In the three-factor model of rs938886, rs820196, and rs1713449, patients carrying the GC-TC-CT genotype had a higher risk of HRV compared with the wild-type GG-TT-CC carriers (P = 0.01). For rs820196, nonsmokers with the TC genotype had a higher HRV risk compared with nonsmokers carrying the TT genotype (P = 0.04). When the HRV cutoff value was 15%, patients carrying the TT-TT and the TC-CT genotypes of rs820196 and rs1713449 showed a higher HRV risk when compared with TT-CC genotype carriers (P = 0.04 and 0.01, respectively). Patients carrying the GC-CT-TC genotypes of rs938886, rs1713449, and rs820196 showed a higher HRV risk compared with GG-CC-TT genotype carriers (P = 0.02). When the HRV cutoff value was 15%, the best-fitting models for the interactions between the SNPs and the environment were the rs820196-smoking (P = 0.022) and rs820196-hypertension (P = 0.043) models. Consistent with the results of the previous grouping, for rs820196, the TC genotype nonsmokers had a higher HRV risk compared with nonsmokers carrying the TT genotype (P = 0.01). CONCLUSION The polymorphism of the RECQL5 and TEP1 genes were associated with HRV during peritoneal lavage with distilled water after gastrectomy.
Collapse
Affiliation(s)
- Shuang Yao
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu Province, China
| | - Yan Yuan
- Department of Anesthesiology, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu Province, China
| | - Jun Zhang
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu Province, China
| | - Yang Yu
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu Province, China
| | - Guang-Hua Luo
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu Province, China
| |
Collapse
|
6
|
Chen H, Hu Y, Zhuang Z, Wang D, Ye Z, Jing J, Cheng X. Advancements and Obstacles of PARP Inhibitors in Gastric Cancer. Cancers (Basel) 2023; 15:5114. [PMID: 37958290 PMCID: PMC10647262 DOI: 10.3390/cancers15215114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 11/15/2023] Open
Abstract
Gastric cancer (GC) is a common and aggressive cancer of the digestive system, exhibiting high aggressiveness and significant heterogeneity. Despite advancements in improving survival rates over the past few decades, GC continues to carry a worrisome prognosis and notable mortality. As a result, there is an urgent need for novel therapeutic approaches to address GC. Recent targeted sequencing studies have revealed frequent mutations in DNA damage repair (DDR) pathway genes in many GC patients. These mutations lead to an increased reliance on poly (adenosine diphosphate-ribose) polymerase (PARP) for DNA repair, making PARP inhibitors (PARPi) a promising treatment option for GC. This article presents a comprehensive overview of the rationale and development of PARPi, highlighting its progress and challenges in both preclinical and clinical research for treating GC.
Collapse
Affiliation(s)
- Hongjie Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; (H.C.); (Y.H.); (D.W.)
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China;
| | - Yangchan Hu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; (H.C.); (Y.H.); (D.W.)
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China;
| | - Zirui Zhuang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China;
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences (UCAS), Hangzhou 310024, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Dingyi Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; (H.C.); (Y.H.); (D.W.)
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China;
| | - Zu Ye
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China;
- Zhejiang Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Hangzhou 310022, China
| | - Ji Jing
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China;
- Zhejiang Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Hangzhou 310022, China
| | - Xiangdong Cheng
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China;
- Zhejiang Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Hangzhou 310022, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| |
Collapse
|
7
|
Mo C, Shiozaki Y, Omabe K, Liu Y. Understanding the Human RECQ5 Helicase-Connecting the Dots from DNA to Clinics. Cells 2023; 12:2037. [PMID: 37626846 PMCID: PMC10453775 DOI: 10.3390/cells12162037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
RECQ5, a member of the conserved RECQ helicase family, is the sole human RECQ homolog that has not been linked to a hereditary developmental syndrome. Nonetheless, dysregulation of RECQ5 has emerged as a significant clinical concern, being linked to cancer predisposition, cardiovascular disease, and inflammation. In cells, RECQ5 assumes a crucial role in the regulation of DNA repair pathways, particularly in the repair of DNA double-strand breaks and inter-strand DNA crosslinks. Moreover, RECQ5 exhibits a capacity to modulate gene expression by interacting with transcription machineries and their co-regulatory proteins, thus safeguarding against transcription-induced DNA damage. This review aims to provide an overview of the multifaceted functions of RECQ5 and its implications in maintaining genomic stability. We will discuss the potential effects of clinical variants of RECQ5 on its cellular functions and their underlying mechanisms in the pathogenesis of cancer and cardiovascular disease. We will review the impact of RECQ5 variants in the field of pharmacogenomics, specifically their influence on drug responses, which may pave the way for novel therapeutic interventions targeting RECQ5 in human diseases.
Collapse
Affiliation(s)
| | | | | | - Yilun Liu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010-3000, USA
| |
Collapse
|
8
|
Huang M, Yao F, Nie L, Wang C, Su D, Zhang H, Li S, Tang M, Feng X, Yu B, Chen Z, Wang S, Yin L, Mou L, Hart T, Chen J. FACS-based genome-wide CRISPR screens define key regulators of DNA damage signaling pathways. Mol Cell 2023; 83:2810-2828.e6. [PMID: 37541219 PMCID: PMC10421629 DOI: 10.1016/j.molcel.2023.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/17/2023] [Accepted: 07/05/2023] [Indexed: 08/06/2023]
Abstract
DNA damage-activated signaling pathways are critical for coordinating multiple cellular processes, which must be tightly regulated to maintain genome stability. To provide a comprehensive and unbiased perspective of DNA damage response (DDR) signaling pathways, we performed 30 fluorescence-activated cell sorting (FACS)-based genome-wide CRISPR screens in human cell lines with antibodies recognizing distinct endogenous DNA damage signaling proteins to identify critical regulators involved in DDR. We discovered that proteasome-mediated processing is an early and prerequisite event for cells to trigger camptothecin- and etoposide-induced DDR signaling. Furthermore, we identified PRMT1 and PRMT5 as modulators that regulate ATM protein level. Moreover, we discovered that GNB1L is a key regulator of DDR signaling via its role as a co-chaperone specifically regulating PIKK proteins. Collectively, these screens offer a rich resource for further investigation of DDR, which may provide insight into strategies of targeting these DDR pathways to improve therapeutic outcomes.
Collapse
Affiliation(s)
- Min Huang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Fuwen Yao
- Department of Hepatopancreatobiliary Surgery, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Litong Nie
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chao Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dan Su
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Huimin Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Siting Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mengfan Tang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xu Feng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bin Yu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhen Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shimin Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ling Yin
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lisha Mou
- Department of Hepatopancreatobiliary Surgery, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Traver Hart
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
9
|
Philip KT, Dutta K, Chakraborty S, Patro BS. Functional inhibition of RECQL5 helicase elicits non-homologous end joining response and sensitivity of breast cancers to PARP inhibitor. Int J Biochem Cell Biol 2023; 161:106443. [PMID: 37392863 DOI: 10.1016/j.biocel.2023.106443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/23/2023] [Accepted: 06/27/2023] [Indexed: 07/03/2023]
Abstract
Poly (ADPRibose) Polymerase inhibitor (PARPi) are clinically approved for the treatment of BRCA-mutated hereditary breast and ovarian cancers with homologous recombination (HR) deficiency, based on synthetic lethality concept. However, ∼90% of breast cancers are BRCA-wild type; they repair PARPi mediated damage through HR, leading to intrinsic de novo resistance. Hence, there is an unmet need of exploring novel targets in HR-proficient aggressive breast cancers for PARPi treatment. RECQL5 physically interacts and disrupts RAD51 from pre-synaptic filaments, aiding HR resolution, replication fork protection and preventing illegitimate recombination. In the current investigation, we show that targeted inhibition of HR by stabilization of RAD51-RECQL5 complex by a pharmacological inhibitor of RECQL5 (4a; 1,3,4-oxadiazole derivative) in the presence of PARPi [talazoparib (BMN673)] leads to abolition of functional HR with uncontrolled activation of NHEJ repair. This was assessed by GFP based NHEJ reporter assay, KU80 recruitment and in vitro NHEJ based plasmid ligation assay. Concomitant treatment with talazoparib and 4a generates copious amounts of replication stress, prolonged cell cycle arrest, extensive double strand breaks (DSBs) and mitotic catastrophe, leading to sensitization of HR-proficient breast cancers. Suppression of NHEJ activity abolishes 4a-mediated sensitization of breast cancers to PARPi treatment. Imperatively, 4a was ineffective against normal mammary epithelial cells, which expresses low RECQL5 vis-à-vis breast cancer cells. Moreover, functional inhibition of RECQL5 suppresses metastatic potential of breast cancer cells in response to PARPi. Together, we identified RECQL5 as a novel pharmacological target for expanding PARPi based treatment horizon for HR-proficient cancers.
Collapse
Affiliation(s)
- Krupa Thankam Philip
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Kartik Dutta
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Saikat Chakraborty
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| | - Birija Sankar Patro
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
10
|
Rosai-Dorfman disease in the central nervous system with two isolated lesions originated from a single clone: a case report. BMC Neurol 2021; 21:352. [PMID: 34517832 PMCID: PMC8436543 DOI: 10.1186/s12883-021-02379-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/02/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Rosai-Dorfman disease (RDD) is a rare, benign, idiopathic non-Langerhans cell histiocytosis. Cases of RDD in the CNS are extremely rare but lethal. RDD is thought to represent a reactive process. Recent studies proposed a subset of RDD cases that had a clonal nature. However, its clone origin is poorly understood. CASE PRESENTATION We present a rare case of RDD in the CNS with two isolated lesions. These two lesions were removed successively after two operations. No seizure nor recurrence appears to date (2 years follow-up). Morphological and immunohistochemical profiles of these two lesions support the diagnosis of RDD. Based on the whole-exome sequencing (WES) data, we found the larger lesion has a higher tumor mutational burden (TMB) and more driver gene mutations than the smaller lesion. We also found seven common truncal mutations in these two lesions, raising the possibility that they might stem from the same ancestor clone. CONCLUSIONS Overall, this is the first report about clonal evolution of RDD in the CNS with two isolated lesions. Our findings contribute to the pathology of RDD, and support the notion that a subset of cases with RDD is a clonal histiocytic disorder driven by genetic alterations.
Collapse
|
11
|
Lloyd R, Urban V, Muñoz-Martínez F, Ayestaran I, Thomas J, de Renty C, O’Connor M, Forment J, Galanty Y, Jackson S. Loss of Cyclin C or CDK8 provides ATR inhibitor resistance by suppressing transcription-associated replication stress. Nucleic Acids Res 2021; 49:8665-8683. [PMID: 34329458 PMCID: PMC8421211 DOI: 10.1093/nar/gkab628] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/04/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023] Open
Abstract
The protein kinase ATR plays pivotal roles in DNA repair, cell cycle checkpoint engagement and DNA replication. Consequently, ATR inhibitors (ATRi) are in clinical development for the treatment of cancers, including tumours harbouring mutations in the related kinase ATM. However, it still remains unclear which functions and pathways dominate long-term ATRi efficacy, and how these vary between clinically relevant genetic backgrounds. Elucidating common and genetic-background specific mechanisms of ATRi efficacy could therefore assist in patient stratification and pre-empting drug resistance. Here, we use CRISPR-Cas9 genome-wide screening in ATM-deficient and proficient mouse embryonic stem cells to interrogate cell fitness following treatment with the ATRi, ceralasertib. We identify factors that enhance or suppress ATRi efficacy, with a subset of these requiring intact ATM signalling. Strikingly, two of the strongest resistance-gene hits in both ATM-proficient and ATM-deficient cells encode Cyclin C and CDK8: members of the CDK8 kinase module for the RNA polymerase II mediator complex. We show that Cyclin C/CDK8 loss reduces S-phase DNA:RNA hybrid formation, transcription-replication stress, and ultimately micronuclei formation induced by ATRi. Overall, our work identifies novel biomarkers of ATRi efficacy in ATM-proficient and ATM-deficient cells, and highlights transcription-associated replication stress as a predominant driver of ATRi-induced cell death.
Collapse
Affiliation(s)
- Rebecca L Lloyd
- Wellcome/Cancer Research UK Gurdon Institute, and Department of Biochemistry, University of Cambridge, UK
| | - Vaclav Urban
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Francisco Muñoz-Martínez
- Wellcome/Cancer Research UK Gurdon Institute, and Department of Biochemistry, University of Cambridge, UK
| | - Iñigo Ayestaran
- Wellcome/Cancer Research UK Gurdon Institute, and Department of Biochemistry, University of Cambridge, UK
| | - John C Thomas
- Wellcome/Cancer Research UK Gurdon Institute, and Department of Biochemistry, University of Cambridge, UK
| | | | | | | | - Yaron Galanty
- Wellcome/Cancer Research UK Gurdon Institute, and Department of Biochemistry, University of Cambridge, UK
| | - Stephen P Jackson
- Wellcome/Cancer Research UK Gurdon Institute, and Department of Biochemistry, University of Cambridge, UK
| |
Collapse
|
12
|
Datta A, Pollock KJ, Kormuth KA, Brosh RM. G-Quadruplex Assembly by Ribosomal DNA: Emerging Roles in Disease Pathogenesis and Cancer Biology. Cytogenet Genome Res 2021; 161:285-296. [PMID: 34469893 DOI: 10.1159/000516394] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/03/2021] [Indexed: 12/15/2022] Open
Abstract
Unique repetitive elements of the eukaryotic genome can be problematic for cellular DNA replication and transcription and pose a source of genomic instability. Human ribosomal DNA (rDNA) exists as repeating units clustered together on several chromosomes. Understanding the molecular mechanisms whereby rDNA interferes with normal genome homeostasis is the subject of this review. We discuss the instability of rDNA as a driver of senescence and the important roles of helicases to suppress its deleterious effects. The propensity of rDNA that is rich in guanine bases to form G-quadruplexes (G4) is discussed and evaluated in disease pathogenesis. Targeting G4 in the ribosomes and other chromosomal loci may represent a useful synthetic lethal approach to combating cancer.
Collapse
Affiliation(s)
- Arindam Datta
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Kevin J Pollock
- Department of Biology, Bethany College, Bethany, West Virginia, USA
| | - Karen A Kormuth
- Department of Biology, Bethany College, Bethany, West Virginia, USA
| | - Robert M Brosh
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, Maryland, USA
| |
Collapse
|
13
|
Simmons RH, Rogers CM, Bochman ML. A deep dive into the RecQ interactome: something old and something new. Curr Genet 2021; 67:761-767. [PMID: 33961099 DOI: 10.1007/s00294-021-01190-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 11/26/2022]
Abstract
RecQ family helicases are found in all domains of life and play roles in multiple processes that underpin genomic integrity. As such, they are often referred to as guardians or caretakers of the genome. Despite their importance, however, there is still much we do not know about their basic functions in vivo, nor do we fully understand how they interact in organisms that encode more than one RecQ family member. We recently took a multi-omics approach to better understand the Saccharomyces cerevisiae Hrq1 helicase and its interaction with Sgs1, with these enzymes being the functional homologs of the disease-linked RECQL4 and BLM helicases, respectively. Using synthetic genetic array analyses, immuno-precipitation coupled to mass spectrometry, and RNA-seq, we found that Hrq1 and Sgs1 likely participate in many pathways outside of the canonical DNA recombination and repair functions for which they are already known. For instance, connections to transcription, ribosome biogenesis, and chromatin/chromosome organization were uncovered. These recent results are briefly detailed with respect to current knowledge in the field, and possible follow-up experiments are suggested. In this way, we hope to gain a wholistic understanding of these RecQ helicases and how their mutation leads to genomic instability.
Collapse
Affiliation(s)
- Robert H Simmons
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN, USA
| | - Cody M Rogers
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN, USA
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Matthew L Bochman
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
14
|
Das T, Pal S, Ganguly A. Human RecQ helicases in transcription-associated stress management: bridging the gap between DNA and RNA metabolism. Biol Chem 2021; 402:617-636. [PMID: 33567180 DOI: 10.1515/hsz-2020-0324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/24/2021] [Indexed: 12/13/2022]
Abstract
RecQ helicases are a highly conserved class of DNA helicases that play crucial role in almost all DNA metabolic processes including replication, repair and recombination. They are able to unwind a wide variety of complex intermediate DNA structures that may result from cellular DNA transactions and hence assist in maintaining genome integrity. Interestingly, a huge number of recent reports suggest that many of the RecQ family helicases are directly or indirectly involved in regulating transcription and gene expression. On one hand, they can remove complex structures like R-loops, G-quadruplexes or RNA:DNA hybrids formed at the intersection of transcription and replication. On the other hand, emerging evidence suggests that they can also regulate transcription by directly interacting with RNA polymerase or recruiting other protein factors that may regulate transcription. This review summarizes the up to date knowledge on the involvement of three human RecQ family proteins BLM, WRN and RECQL5 in transcription regulation and management of transcription associated stress.
Collapse
Affiliation(s)
- Tulika Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur721302, India
| | - Surasree Pal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur721302, India
| | - Agneyo Ganguly
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur721302, India
| |
Collapse
|
15
|
Rogers CM, Sanders E, Nguyen PA, Smith-Kinnaman W, Mosley AL, Bochman ML. The Genetic and Physical Interactomes of the Saccharomyces cerevisiae Hrq1 Helicase. G3 (BETHESDA, MD.) 2020; 10:4347-4357. [PMID: 33115721 PMCID: PMC7718736 DOI: 10.1534/g3.120.401864] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/23/2020] [Indexed: 01/03/2023]
Abstract
The human genome encodes five RecQ helicases (RECQL1, BLM, WRN, RECQL4, and RECQL5) that participate in various processes underpinning genomic stability. Of these enzymes, the disease-associated RECQL4 is comparatively understudied due to a variety of technical challenges. However, Saccharomyces cerevisiae encodes a functional homolog of RECQL4 called Hrq1, which is more amenable to experimentation and has recently been shown to be involved in DNA inter-strand crosslink (ICL) repair and telomere maintenance. To expand our understanding of Hrq1 and the RecQ4 subfamily of helicases in general, we took a multi-omics approach to define the Hrq1 interactome in yeast. Using synthetic genetic array analysis, we found that mutations of genes involved in processes such as DNA repair, chromosome segregation, and transcription synthetically interact with deletion of HRQ1 and the catalytically inactive hrq1-K318A allele. Pull-down of tagged Hrq1 and mass spectrometry identification of interacting partners similarly underscored links to these processes and others. Focusing on transcription, we found that hrq1 mutant cells are sensitive to caffeine and that mutation of HRQ1 alters the expression levels of hundreds of genes. In the case of hrq1-K318A, several of the most highly upregulated genes encode proteins of unknown function whose expression levels are also increased by DNA ICL damage. Together, our results suggest a heretofore unrecognized role for Hrq1 in transcription, as well as novel members of the Hrq1 ICL repair pathway. These data expand our understanding of RecQ4 subfamily helicase biology and help to explain why mutations in human RECQL4 cause diseases of genomic instability.
Collapse
Affiliation(s)
- Cody M Rogers
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405
| | - Elsbeth Sanders
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405
| | - Phoebe A Nguyen
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405
| | - Whitney Smith-Kinnaman
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Amber L Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Matthew L Bochman
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405
| |
Collapse
|