1
|
Zară-Dănceanu CM, Minuti AE, Stavilă C, Lăbuscă L, Herea DD, Tiron CE, Chiriac H, Lupu N. Magnetic Nanoparticle Coating Decreases the Senescence and Increases the Targeting Potential of Fibroblasts and Adipose-Derived Mesenchymal Stem Cells. ACS OMEGA 2023; 8:23953-23963. [PMID: 37426224 PMCID: PMC10324382 DOI: 10.1021/acsomega.3c02449] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023]
Abstract
Magnetic nanoparticles (MNPs) are intensely scrutinized for applications in emerging biomedical fields. Their potential use for drug delivery, tracking, and targeting agents or for cell handling is tested for regenerative medicine and tissue engineering applications. The large majority of MNPs tested for biomedical use are coated with different lipids and natural or synthetic polymers in order to decrease their degradation process and to increase the ability to transport drugs or bioactive molecules. Our previous studies highlighted the fact that the as-prepared MNP-loaded cells can display increased resistance to culture-induced senescence as well as ability to target pathological tissues; however, this effect tends to be dependent on the cell type. Here, we assessed comparatively the effect of two types of commonly used lipid coatings, oleic acid (OA) and palmitic acid (PA), on normal human dermal fibroblasts and adipose-derived mesenchymal cells with culture-induced senescence and cell motility in vitro. OA and PA coatings improved MNPs stability and dispersibility. We found good viability for cells loaded with all types of MNPs; however, a significant increase was obtained with the as-prepared MNPs and OA-MNPs. The coating decreases iron uptake in both cell types. Fibroblasts (Fb) integrate MNPs at a slower rate compared to adipose-derived mesenchymal stem cells (ADSCs). The as-prepared MNPs induced a significant decrease in beta-galactosidase (B-Gal) activity with a nonsignificant one observed for OA-MNPs and PA-MNPs in ADSCs and Fb. The as-prepared MNPs significantly decrease senescence-associated B-Gal enzymatic activity in ADSCs but not in Fb. Remarkably, a significant increase in cell mobility could be detected in ADSCs loaded with OA-MNPscompared to controls. The OA-MNPs uptake significantly increases ADSCs mobility in a wound healing model in vitro compared to nonloaded counterparts, while these observations need to be validated in vivo. The present findings provide evidence that support applications of OA-MNPs in wound healing and cell therapy involving reparative processes as well as organ and tissue targeting.
Collapse
Affiliation(s)
- Camelia-Mihaela Zară-Dănceanu
- Department
of Magnetic Materials and Devices, National
Institute of Research and Development for Technical Physics, 47 Dimitrie Mangeron Boulevard, 700050 Iaşi, Romania
| | - Anca-Emanuela Minuti
- Department
of Magnetic Materials and Devices, National
Institute of Research and Development for Technical Physics, 47 Dimitrie Mangeron Boulevard, 700050 Iaşi, Romania
- Faculty
of Physics, Alexandru Ioan Cuza University, 700506 Iaşi, Romania
| | - Cristina Stavilă
- Department
of Magnetic Materials and Devices, National
Institute of Research and Development for Technical Physics, 47 Dimitrie Mangeron Boulevard, 700050 Iaşi, Romania
- Faculty
of Physics, Alexandru Ioan Cuza University, 700506 Iaşi, Romania
| | - Luminiţa Lăbuscă
- Department
of Magnetic Materials and Devices, National
Institute of Research and Development for Technical Physics, 47 Dimitrie Mangeron Boulevard, 700050 Iaşi, Romania
- County
Emergency Hospital Saint Spiridon, Orthopedics
and Traumatology Clinic, Bulevardul Independenţei 1, 700111 Iaşi, Romania
| | - Dumitru-Daniel Herea
- Department
of Magnetic Materials and Devices, National
Institute of Research and Development for Technical Physics, 47 Dimitrie Mangeron Boulevard, 700050 Iaşi, Romania
| | - Crina Elena Tiron
- Regional
Institute of Oncology, TRANSCEND Centre General Mathias Berthelot 2-4, 700483 Iaşi, Romania
| | - Horia Chiriac
- Department
of Magnetic Materials and Devices, National
Institute of Research and Development for Technical Physics, 47 Dimitrie Mangeron Boulevard, 700050 Iaşi, Romania
| | - Nicoleta Lupu
- Department
of Magnetic Materials and Devices, National
Institute of Research and Development for Technical Physics, 47 Dimitrie Mangeron Boulevard, 700050 Iaşi, Romania
| |
Collapse
|
2
|
Jiang Q, Zhang S. Stimulus-Responsive Drug Delivery Nanoplatforms for Osteoarthritis Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206929. [PMID: 36905239 DOI: 10.1002/smll.202206929] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/16/2023] [Indexed: 06/08/2023]
Abstract
Osteoarthritis (OA) is one of the most prevalent age-related degenerative diseases. With an increasingly aging global population, greater numbers of OA patients are providing clear economic and societal burdens. Surgical and pharmacological treatments are the most common and conventional therapeutic strategies for OA, but often fall considerably short of desired or optimal outcomes. With the development of stimulus-responsive nanoplatforms has come the potential for improved therapeutic strategies for OA. Enhanced control, longer retention time, higher loading rates, and increased sensitivity are among the potential benefits. This review summarizes the advanced application of stimulus-responsive drug delivery nanoplatforms for OA, categorized by either those that depend on endogenous stimulus (reactive oxygen species, pH, enzyme, and temperature), or those that depend on exogenous stimulus (near-infrared ray, ultrasound, magnetic fields). The opportunities, restrictions, and limitations related to these various drug delivery systems, or their combinations, are discussed in areas such as multi-functionality, image guidance, and multi-stimulus response. The remaining constraints and potential solutions that are represented by the clinical application of stimulus-responsive drug delivery nanoplatforms are finally summarized.
Collapse
Affiliation(s)
- Qi Jiang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| | - Shufang Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| |
Collapse
|
3
|
Garello F, Svenskaya Y, Parakhonskiy B, Filippi M. Micro/Nanosystems for Magnetic Targeted Delivery of Bioagents. Pharmaceutics 2022; 14:pharmaceutics14061132. [PMID: 35745705 PMCID: PMC9230665 DOI: 10.3390/pharmaceutics14061132] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 01/09/2023] Open
Abstract
Targeted delivery of pharmaceuticals is promising for efficient disease treatment and reduction in adverse effects. Nano or microstructured magnetic materials with strong magnetic momentum can be noninvasively controlled via magnetic forces within living beings. These magnetic carriers open perspectives in controlling the delivery of different types of bioagents in humans, including small molecules, nucleic acids, and cells. In the present review, we describe different types of magnetic carriers that can serve as drug delivery platforms, and we show different ways to apply them to magnetic targeted delivery of bioagents. We discuss the magnetic guidance of nano/microsystems or labeled cells upon injection into the systemic circulation or in the tissue; we then highlight emergent applications in tissue engineering, and finally, we show how magnetic targeting can integrate with imaging technologies that serve to assist drug delivery.
Collapse
Affiliation(s)
- Francesca Garello
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy;
| | - Yulia Svenskaya
- Science Medical Center, Saratov State University, 410012 Saratov, Russia;
| | - Bogdan Parakhonskiy
- Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium;
| | - Miriam Filippi
- Soft Robotics Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
- Correspondence:
| |
Collapse
|
4
|
Hu X, Liu W, Sun L, Xu S, Wang T, Meng J, Wen T, Liu Q, Liu J, Xu H. Magnetic Nanofibrous Scaffolds Accelerate the Regeneration of Muscle Tissue in Combination with Extra Magnetic Fields. Int J Mol Sci 2022; 23:ijms23084440. [PMID: 35457258 PMCID: PMC9025939 DOI: 10.3390/ijms23084440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 12/27/2022] Open
Abstract
The reversal of loss of the critical size of skeletal muscle is urgently required using biomaterial scaffolds to guide tissue regeneration. In this work, coaxial electrospun magnetic nanofibrous scaffolds were fabricated, with gelatin (Gel) as the shell of the fiber and polyurethane (PU) as the core. Iron oxide nanoparticles (Mag) of 10 nm diameter were added to the shell and core layer. Myoblast cells (C2C12) were cultured on the magnetic scaffolds and exposed to the applied magnetic fields. A mouse model of skeletal muscle injury was used to evaluate the repair guided by the scaffolds under the magnetic fields. It was shown that VEGF secretion and MyoG expression for the myoblast cells grown on the magnetic scaffolds under the magnetic fields were significantly increased, while, the gene expression of Myh4 was up-regulated. Results from an in vivo study indicated that the process of skeletal muscle regeneration in the mouse muscle injury model was accelerated by using the magnetic actuated strategy, which was verified by histochemical analysis, immunofluorescence staining of CD31, electrophysiological measurement and ultrasound imaging. In conclusion, the integration of a magnetic scaffold combined with the extra magnetic fields enhanced myoblast differentiation and VEGF secretion and accelerated the defect repair of skeletal muscle in situ.
Collapse
Affiliation(s)
- Xuechun Hu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; (X.H.); (L.S.); (S.X.); (T.W.); (J.M.); (T.W.); (Q.L.)
| | - Wenhao Liu
- Peking Union Medical College, Beijing 100073, China;
| | - Lihong Sun
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; (X.H.); (L.S.); (S.X.); (T.W.); (J.M.); (T.W.); (Q.L.)
| | - Shilin Xu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; (X.H.); (L.S.); (S.X.); (T.W.); (J.M.); (T.W.); (Q.L.)
| | - Tao Wang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; (X.H.); (L.S.); (S.X.); (T.W.); (J.M.); (T.W.); (Q.L.)
| | - Jie Meng
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; (X.H.); (L.S.); (S.X.); (T.W.); (J.M.); (T.W.); (Q.L.)
| | - Tao Wen
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; (X.H.); (L.S.); (S.X.); (T.W.); (J.M.); (T.W.); (Q.L.)
| | - Qingqiao Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; (X.H.); (L.S.); (S.X.); (T.W.); (J.M.); (T.W.); (Q.L.)
| | - Jian Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; (X.H.); (L.S.); (S.X.); (T.W.); (J.M.); (T.W.); (Q.L.)
- Correspondence: (J.L.); (H.X.); Tel.: +86-10-6915-6437 (H.X.)
| | - Haiyan Xu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; (X.H.); (L.S.); (S.X.); (T.W.); (J.M.); (T.W.); (Q.L.)
- Correspondence: (J.L.); (H.X.); Tel.: +86-10-6915-6437 (H.X.)
| |
Collapse
|
5
|
Yang SW, Chen YJ, Chen CJ, Liu JT, Yang CY, Tsai JH, Lu HE, Chen SY, Chang SJ. High-Density Horizontal Stacking of Chondrocytes via the Synergy of Biocompatible Magnetic Gelatin Nanocarriers and Internal Magnetic Navigation for Enhancing Cartilage Repair. Polymers (Basel) 2022; 14:809. [PMID: 35215722 PMCID: PMC8963011 DOI: 10.3390/polym14040809] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 12/21/2022] Open
Abstract
Osteoarthritis (OA) is a globally occurring articular cartilage degeneration disease that adversely affects both the physical and mental well-being of the patient, including limited mobility. One major pathological characteristic of OA is primarily related to articular cartilage defects resulting from abrasion and catabolic and proinflammatory mediators in OA joints. Although cell therapy has hitherto been regarded as a promising treatment for OA, the therapeutic effects did not meet expectations due to the outflow of implanted cells. Here, we aimed to explore the repair effect of magnetized chondrocytes using magnetic amphiphilic-gelatin nanocarrier (MAGNC) to enhance cellular anchored efficiency and cellular magnetic guidance (MG) toward the superficial zone of damaged cartilage. The results of in vitro experiments showed that magnetized chondrocytes could be rapidly guided along the magnetic force line to form cellular amassment. Furthermore, the Arg-Gly-Asp (RGD) motif of gelatin in MAGNC could integrate the interaction among cells to form cellular stacking. In addition, MAGNCs upregulated the gene expression of collagen II (Col II), aggrecan, and downregulated that of collagen I (Col I) to reduce cell dedifferentiation. In animal models, the magnetized chondrocytes can be guided into the superficial zone with the interaction between the internal magnetic field and MAGNC to form cellular stacking. In vivo results showed that the intensity of N-sulfated-glycosaminoglycans (sGAG) and Col II in the group of magnetized cells with magnetic guiding was higher than that in the other groups. Furthermore, smooth closure of OA cartilage defects was observed in the superficial zone after 8 weeks of implantation. The study revealed the significant potential of MAGNC in promoting the high-density stacking of chondrocytes into the cartilage surface and retaining the biological functions of implanted chondrocytes for OA cartilage repair.
Collapse
Affiliation(s)
- Shan-Wei Yang
- Department of Orthopedics, Kaohsiung Veterans General Hospital, Kaohsiung City 813414, Taiwan;
| | - Yong-Ji Chen
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City 813414, Taiwan; (Y.-J.C.); (C.-Y.Y.); (J.-H.T.)
| | - Ching-Jung Chen
- School of Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Jen-Tsai Liu
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Chin-Yi Yang
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City 813414, Taiwan; (Y.-J.C.); (C.-Y.Y.); (J.-H.T.)
| | - Jen-Hao Tsai
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City 813414, Taiwan; (Y.-J.C.); (C.-Y.Y.); (J.-H.T.)
| | - Huai-En Lu
- Food Industry Research and Development Institute, Hsinchu 300193, Taiwan
| | - San-Yuan Chen
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu City 300093, Taiwan
- Graduate Institute of Biomedical Science, China Medical University, Taichung City 406040, Taiwan
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung City 813414, Taiwan
| | - Shwu-Jen Chang
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City 813414, Taiwan; (Y.-J.C.); (C.-Y.Y.); (J.-H.T.)
| |
Collapse
|
6
|
Labusca L, Herea DD, Emanuela Minuti A, Stavila C, Danceanu C, Plamadeala P, Chiriac H, Lupu N. Magnetic Nanoparticles and Magnetic Field Exposure Enhances Chondrogenesis of Human Adipose Derived Mesenchymal Stem Cells But Not of Wharton Jelly Mesenchymal Stem Cells. Front Bioeng Biotechnol 2021; 9:737132. [PMID: 34733830 PMCID: PMC8558412 DOI: 10.3389/fbioe.2021.737132] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/10/2021] [Indexed: 02/05/2023] Open
Abstract
Purpose: Iron oxide based magnetic nanoparticles (MNP) are versatile tools in biology and medicine. Adipose derived mesenchymal stem cells (ADSC) and Wharton Jelly mesenchymal stem cells (WJMSC) are currently tested in different strategies for regenerative regenerative medicine (RM) purposes. Their superiority compared to other mesenchymal stem cell consists in larger availability, and superior proliferative and differentiation potential. Magnetic field (MF) exposure of MNP-loaded ADSC has been proposed as a method to deliver mechanical stimulation for increasing conversion to musculoskeletal lineages. In this study, we investigated comparatively chondrogenic conversion of ADSC-MNP and WJMSC with or without MF exposure in order to identify the most appropriate cell source and differentiation protocol for future cartilage engineering strategies. Methods: Human primary ADSC and WJMSC from various donors were loaded with proprietary uncoated MNP. The in vitro effect on proliferation and cellular senescence (beta galactosidase assay) in long term culture was assessed. In vitro chondrogenic differentiation in pellet culture system, with or without MF exposure, was assessed using pellet histology (Safranin O staining) as well as quantitative evaluation of glycosaminoglycan (GAG) deposition per cell. Results: ADSC-MNP complexes displayed superior proliferative capability and decreased senescence after long term (28 days) culture in vitro compared to non-loaded ADSC and to WJMSC-MNP. Significant increase in chondrogenesis conversion in terms of GAG/cell ratio could be observed in ADSC-MNP. MF exposure increased glycosaminoglycan deposition in MNP-loaded ADSC, but not in WJMSC. Conclusion: ADSC-MNP display decreased cellular senescence and superior chondrogenic capability in vitro compared to non-loaded cells as well as to WJMSC-MNP. MF exposure further increases ADSC-MNP chondrogenesis in ADSC, but not in WJMSC. Loading ADSC with MNP can derive a successful procedure for obtaining improved chondrogenesis in ADSC. Further in vivo studies are needed to confirm the utility of ADSC-MNP complexes for cartilage engineering.
Collapse
Affiliation(s)
- Luminita Labusca
- National Institute of Research and Development for Technical Physics, Iasi, Romania
- Orthopedics and Traumatology Clinic County Emergency Hospital Saint Spiridon, Iasi, Romania
| | - Dumitru-Daniel Herea
- National Institute of Research and Development for Technical Physics, Iasi, Romania
| | - Anca Emanuela Minuti
- National Institute of Research and Development for Technical Physics, Iasi, Romania
- Faculty of Physics, Alexandru Ioan Cuza University, Iasi, Romania
| | - Cristina Stavila
- National Institute of Research and Development for Technical Physics, Iasi, Romania
- Faculty of Physics, Alexandru Ioan Cuza University, Iasi, Romania
| | - Camelia Danceanu
- National Institute of Research and Development for Technical Physics, Iasi, Romania
- Faculty of Physics, Alexandru Ioan Cuza University, Iasi, Romania
| | - Petru Plamadeala
- Pathology Department County Children Emergency Hospital Saint Mary, Iasi, Romania
| | - Horia Chiriac
- National Institute of Research and Development for Technical Physics, Iasi, Romania
| | - Nicoleta Lupu
- National Institute of Research and Development for Technical Physics, Iasi, Romania
| |
Collapse
|
7
|
Elahi N, Rizwan M. Progress and prospects of magnetic iron oxide nanoparticles in biomedical applications: A review. Artif Organs 2021; 45:1272-1299. [PMID: 34245037 DOI: 10.1111/aor.14027] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 12/26/2022]
Abstract
Nanoscience has been considered as one of the most substantial research in modern science. The utilization of nanoparticle (NP) materials provides numerous advantages in biomedical applications due to their unique properties. Among various types of nanoparticles, the magnetic nanoparticles (MNPs) of iron oxide possess intrinsic features, which have been efficiently exploited for biomedical purposes including drug delivery, magnetic resonance imaging, Magnetic-activated cell sorting, nanobiosensors, hyperthermia, and tissue engineering and regenerative medicine. The size and shape of nanostructures are the main factors affecting the physicochemical features of superparamagnetic iron oxide nanoparticles, which play an important role in the improvement of MNP properties, and can be controlled by appropriate synthesis strategies. On the other hand, the proper modification and functionalization of the surface of iron oxide nanoparticles have significant effects on the improvement of physicochemical and mechanical features, biocompatibility, stability, and surface activity of MNPs. This review focuses on popular methods of fabrication, beneficial surface coatings with regard to the main required features for their biomedical use, as well as new applications.
Collapse
Affiliation(s)
- Narges Elahi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advance Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.,Department of Medical Nanotechnology, School of Advance Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Muhammad Rizwan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Almeida AF, Vinhas A, Gonçalves AI, Miranda MS, Rodrigues MT, Gomes ME. Magnetic triggers in biomedical applications - prospects for contact free cell sensing and guidance. J Mater Chem B 2021; 9:1259-1271. [PMID: 33410453 DOI: 10.1039/d0tb02474k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In recent years, the inputs from magnetically assisted strategies have been contributing to the development of more sensitive screening methods and precise means of diagnosis to overcome existing and emerging treatment challenges. The features of magnetic materials enabling in vivo traceability, specific targeting and space- and time-controlled delivery of nanomedicines have highlighted the resourcefulness of the magnetic toolbox for biomedical applications and theranostic strategies. The breakthroughs in magnetically assisted technologies for contact-free control of cell and tissue fate opens new perspectives to improve healing and instruct regeneration reaching a wide range of diseases and disorders. In this review, the contribution of magnetic nanoparticles (MNPs) will be explored as sophisticated and versatile nanotriggers, evidencing their unique cues to probe and control cell function. As cells detect and engage external magnetic features, these approaches will be overviewed considering molecular engineering and cell programming perspectives as well as cell and tissue targeting modalities. The therapeutic relevance of MNPs will be also emphasized as key components of nanostructured systems to control the release of nanomedicines and in the context of new therapy technologies.
Collapse
Affiliation(s)
- Ana F Almeida
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Adriana Vinhas
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana I Gonçalves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Margarida S Miranda
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Márcia T Rodrigues
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Manuela E Gomes
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|