1
|
Li CX, Xu Q, Jiang ST, Liu D, Tang C, Yang WL. Anticancer effects of salvianolic acid A through multiple signaling pathways (Review). Mol Med Rep 2025; 32:176. [PMID: 40280109 PMCID: PMC12056544 DOI: 10.3892/mmr.2025.13541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/18/2025] [Indexed: 04/29/2025] Open
Abstract
Salvia miltiorrhiza Bunge (Salvia miltiorrhiza), commonly referred to as Danshen, is a well‑known herb in traditional Chinese medicine, the active ingredients of which are mostly categorized as water soluble and lipid soluble. Salvianolic acids are the major water‑soluble phenolic acid constituents of Danshen; salvianolic acid B is the most prevalent, with salvianolic acid A (SAA) being the next most predominant form. SAA offers a wide array of pharmacological benefits, including cardiovascular protection, and anti‑inflammatory, antioxidant, antiviral and anticancer activities. SAA is currently undergoing phase III clinical trials for diabetic peripheral neuropathy and has shown protective benefits against cardiovascular illnesses; furthermore, its safety and effectiveness are encouraging. By targeting several signaling pathways, preventing cell cycle progression, tumor cell migration, invasion and metastasis, normalizing the tumor vasculature and encouraging cell apoptosis, SAA can also prevent the growth of malignancies. In addition, it enhances sensitivity to chemotherapeutic drugs, and alleviates their toxicity and side effects. However, the broad therapeutic use of SAA has been somewhat limited by its low content in Salvia miltiorrhiza Bunge and the difficulty of its extraction techniques. Therefore, the present review focuses on the potential mechanisms of SAA in tumor prevention and treatment. With the anticipation that SAA will serve a notable role in clinical applications in the future, these discoveries may offer a scientific basis for the combination of SAA with conventional chemotherapeutic drugs in the treatment of cancer, and could establish a foundation for the development of SAA as an anticancer drug.
Collapse
Affiliation(s)
- Cheng-Xia Li
- Institute for Cancer Medicine, School of Basic Medicine Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Qi Xu
- Institute for Cancer Medicine, School of Basic Medicine Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Shi-Ting Jiang
- Institute for Cancer Medicine, School of Basic Medicine Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Dan Liu
- Institute for Cancer Medicine, School of Basic Medicine Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Chao Tang
- Institute for Cancer Medicine, School of Basic Medicine Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Wen-Li Yang
- Institute for Cancer Medicine, School of Basic Medicine Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
2
|
Lai X, Zhang Y, Li M, Yu S, Wang S, Zhang S, Niu H, Chen L, Lan X, Zhang J, Chen S. HGF/c-Met Promotes Breast Cancer Tamoxifen Resistance Through the EZH2/HOTAIR-miR-141/200a Feedback Signaling Pathway. Mol Carcinog 2025; 64:769-783. [PMID: 39853766 DOI: 10.1002/mc.23878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/05/2024] [Accepted: 12/20/2024] [Indexed: 01/26/2025]
Abstract
Tamoxifen is one of the most frequently used endocrine medications for the treatment of estrogen receptor-positive (ER + ) breast cancer (BC). Unfortunately, tamoxifen resistance (TR) brings more challenges to the clinical treatment, and the mechanisms of TR have not yet been fully clarified. HGF/c-Met is closely associated with cancer metastasis, but whether it is involved in TR remains unclear. In our study, we found that the activation of HGF/c-Met was crucial for TR maintenance. Synergistic interaction with HOTAIR and EZH2 accelerated HGF expression by repressing miR-141/200a. Additionally, HGF/c-Met activated NF-κB, forming a positive feedback loop of EZH2/HOTAIR-miR-141/200a-HGF/c-Met-NF-κB. Our findings indicated that HGF/c-Met functioned as an important biomarker for TR, and HGF/c-Met inhibition provided a novel approach to TR treatment.
Collapse
Affiliation(s)
- Xiaofeng Lai
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, China
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (The 900TH Hospital), Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, China
| | - Yuan Zhang
- Department of Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Mengyang Li
- The Faculty of Hepatopancreatobiliary Surgery, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Shentong Yu
- Department of Pathology, 900TH Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Shuiliang Wang
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (The 900TH Hospital), Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, China
| | - Shenghang Zhang
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (The 900TH Hospital), Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, China
| | - Huimin Niu
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (The 900TH Hospital), Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, China
| | - Li Chen
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (The 900TH Hospital), Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, China
| | - Xiaopeng Lan
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (The 900TH Hospital), Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, China
| | - Jian Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, China
| | - Suning Chen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
3
|
Peng Y, Iwasaki K, Taguchi Y, Ishikawa I, Umeda M. Mesenchymal stem cell-derived protein extract induces periodontal regeneration. Cytotherapy 2025; 27:201-212. [PMID: 39545910 DOI: 10.1016/j.jcyt.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Periodontal disease is characterized by chronic inflammation and destruction of supporting periodontal tissues, ultimately leading to tooth loss. In recent years, "cell-free treatment" without stem cell transplantation has attracted considerable attention for tissue regeneration. This study investigated the effects of extracts of mesenchymal stem cells (MSC-extract) and their protein components (MSC-protein) on the proliferation and migration of periodontal ligament (PDL) cells and whether MSC-protein can induce periodontal regeneration. METHODS MSC-extract and MSC-protein were obtained by subjecting mesenchymal stem cells (MSCs) to freeze-thaw cycles and acetone precipitation. Cell proliferation was examined using a WST-8 assay and Ki67 immunostaining, and cell migration was examined using Boyden chambers. The MSC-protein content was analyzed using liquid chromatography-mass spectrometry, protein arrays, and enzyme-linked immunosorbent assays (ELISAs). Gene expression in MSC-protein-treated PDL cells was examined using RNA-sequencing and Gene Ontology analyses. The regenerative potential of MSC-protein was examined using micro-computer tomography (CT) and histological analyses after transplantation into a rat periodontal defect model. RESULTS MSC-extract and MSC-protein promoted the proliferation and migration of PDL cells. Protein array and ELISA revealed that MSC-protein contained high concentrations of basic fibroblast growth factor (bFGF) and hepatocyte growth factor (HGF). Exogenous bFGF promoted the proliferation and migration of PDL cells. Furthermore, the transplantation of MSC-protein enhanced periodontal tissue regeneration with the formation of new alveolar bone and PDLs. CONCLUSIONS These results indicate that the MSC-protein promotes the proliferation and migration of PDL cells and induces significant periodontal tissue regeneration, suggesting that the MSC-protein could be used as a new cell-free treatment for periodontal disease.
Collapse
Affiliation(s)
- Yihao Peng
- Department of Periodontology, Osaka Dental University, Osaka, Japan
| | - Kengo Iwasaki
- Division of Creative and Integrated Medicine, Advanced Medicine Research Center, Translational Research Institute for Medical Innovation (TRIMI), Osaka Dental University, Osaka, Japan.
| | - Yoichiro Taguchi
- Department of Periodontology, Osaka Dental University, Osaka, Japan
| | | | - Makoto Umeda
- Department of Periodontology, Osaka Dental University, Osaka, Japan
| |
Collapse
|
4
|
Shen W, Yao PA, Li W, Gu C, Gao T, Cao Y, Wang Z, Pei R, Xing C. Cancer-associated fibroblast-targeted nanodrugs reshape colorectal tumor microenvironments to suppress tumor proliferation, metastasis and improve drug penetration. J Mater Chem B 2023; 11:1871-1880. [PMID: 36477303 DOI: 10.1039/d2tb02253b] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cancer-associated fibroblasts (CAFs) produce a critical tumor-promoting effect by cellular crosstalk with cancer cells and remodel the extracellular matrix (ECM) to form a protective physical barrier. The simple elimination of CAFs is not sufficient to govern the CAF-shaped aggressive tumor microenvironment (TME) because of the complexity of tumors. Herein, a CAF-targeted poly (lactic-co-glycolic acid) (PLGA) nanoemulsion is tailored to simultaneously deliver doxorubicin (DOX) and small interfering RNA (siRNA) targeting hepatocyte growth factor (HGF) for the combination of chemotherapy and gene therapy. The nanoemulsion (apt-Si/DNPs) shows a high specificity towards CAFs due to the aptamer modification and efficiently induces the apoptosis of CAFs, thus decreasing ECM deposition in the TME. Importantly, the delivered siRNA reduces the expression of the HGF in the remaining CAFs, which overcomes chemotherapy-induced upregulation of HGF mRNA and prevents the reproduction of CAFs through the autocrine HGF closed-loop. Owing to these synergetic effects, tumor proliferation, migration and invasion are prominently inhibited and tumor permeability is improved significantly. Overall, these results emphasize the potential of CAF-targeted combination treatments to inhibit tumor progression and metastasis, as well as overcome therapeutic resistance.
Collapse
Affiliation(s)
- Wenqi Shen
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou, 215004, P. R. China. .,CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China.
| | - Ping-An Yao
- Department of Gastrointestinal Surgery, Shanghai East Hospital (East Hospital Affiliated to Tongji University), 150 Jimo Road, Shanghai, 200120, China
| | - Wenjing Li
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China.
| | - Changji Gu
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou, 215004, P. R. China.
| | - Tian Gao
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China.
| | - Yi Cao
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China.
| | - Zheng Wang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China.
| | - Renjun Pei
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China.
| | - Chungen Xing
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou, 215004, P. R. China.
| |
Collapse
|
5
|
Wang X, Qian S, Wang S, Jia S, Zheng N, Yao Q, Gao J. Combination of Vitamin C and Lenvatinib potentiates antitumor effects in hepatocellular carcinoma cells in vitro. PeerJ 2023; 11:e14610. [PMID: 36718449 PMCID: PMC9884045 DOI: 10.7717/peerj.14610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/30/2022] [Indexed: 01/26/2023] Open
Abstract
Lenvatinib has become a first-line drug in the treatment of advanced hepatocellular carcinoma (HCC). Investigating its use in combination with other agents is of great significance to improve the sensitivity and durable response of Lenvatinib in advanced HCC patients. Vitamin C (L-ascorbic acid, ascorbate, VC) is an important natural antioxidant, which has been reported to show suppressive effects in cancer treatment. Here, we investigated the effect of the combination of VC and Lenvatinib in HCC cells in vitro. We found that treatment of VC alone significantly inhibited the proliferation, migration and invasion in HCC cells. Additionally, VC was strongly synergistic with Lenvatinib in inhibition of the proliferative, migratory and invasive capacities of HCC cells in vitro. In conclusion, our results demonstrate that the combination of VC and Lenvatinib has synergistic antitumor activities against HCC cells, providing a promising therapeutic strategy to improve the prognosis of HCC patients.
Collapse
Affiliation(s)
- Xinyue Wang
- Department of Nutrition, Xiamen Clinical Research Center for Cancer Therapy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian province, China
| | - Songyi Qian
- Department of Cardiac Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian province, China
| | - Siyi Wang
- Department of Nutrition, Xiamen Clinical Research Center for Cancer Therapy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian province, China
| | - Sheng Jia
- Department of Nutrition, Xiamen Clinical Research Center for Cancer Therapy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian province, China
| | - Nishang Zheng
- Department of Nutrition, Xiamen Clinical Research Center for Cancer Therapy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian province, China
| | - Qing Yao
- Department of Nutrition, Xiamen Clinical Research Center for Cancer Therapy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian province, China
| | - Jian Gao
- Department of Nutrition, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Guo Y, Hu H, Xu S, Xia W, Li H. Useful genes for predicting the efficacy of transarterial chemoembolization in hepatocellular carcinoma. J Cancer Res Ther 2022; 18:1860-1866. [PMID: 36647943 DOI: 10.4103/jcrt.jcrt_1479_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Transarterial chemoembolization (TACE) is generally used to treat patients with hepatocellular carcinoma (HCC), a common and deadly cancer; however, its efficacy varies according to factors such as tumor volume, stage, serum alpha-fetoprotein level, and chosen feeding artery. In addition, gene-related factors have been recently suggested to be involved in the regulation and prediction of TACE outcomes. Accordingly, genes could serve as effective biomarkers to select patients who can benefit from TACE. These gene-related factors can activate signaling pathways affecting cancer cell survival while regulating the epithelial-mesenchymal transition, angiogenesis, and the tumor microenvironment, all directly associated with tumor progression, thereby affecting TACE efficacy. Moreover, this disordered gene expression is associated with poor prognosis in patients with HCC, including TACE resistance, postoperative recurrence, and metastasis. To identify the exact relationship between various genes and TACE efficacy, this review summarizes the involvement of protein-coding and non-coding genes and single nucleotide polymorphisms in TACE efficacy for predicting the efficacy of TACE; the present findings may help improve the efficacy of TACE in clinical settings.
Collapse
Affiliation(s)
- Yuan Guo
- Department of Minimal Invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Hongtao Hu
- Department of Minimal Invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Shijun Xu
- Department of Radiology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Weili Xia
- Department of Minimal Invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Hailiang Li
- Department of Minimal Invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
7
|
Haque E, Esmail A, Muhsen I, Salah H, Abdelrahim M. Recent Trends and Advancements in the Diagnosis and Management of Gastric Cancer. Cancers (Basel) 2022; 14:5615. [PMID: 36428707 PMCID: PMC9688354 DOI: 10.3390/cancers14225615] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022] Open
Abstract
Gastric cancer is an enigmatic malignancy that has recently been shown to be increasing in incidence globally. There has been recent progress in emerging technologies for the diagnosis and treatment of the disease. Improvements in non-invasive diagnostic techniques with serological tests and biomarkers have led to decreased use of invasive procedures such as endoscopy. A multidisciplinary approach is used to treat gastric cancer, with recent significant advancements in systemic therapies used in combination with cytotoxic chemotherapies. New therapeutic targets have been identified and clinical trials are taking place to assess their efficacy and safety. In this review, we provide an overview of the current and emerging treatment strategies and diagnostic techniques for gastric cancer.
Collapse
Affiliation(s)
- Emaan Haque
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Abdullah Esmail
- Section of GI Oncology, Houston Methodist Neal Cancer Center, Houston, TX 77030, USA
| | - Ibrahim Muhsen
- Section of Hematology and Oncology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Haneen Salah
- Department of Pathology, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Maen Abdelrahim
- Section of GI Oncology, Houston Methodist Neal Cancer Center, Houston, TX 77030, USA
- Cockrell Center for Advanced Therapeutic Phase I Program, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| |
Collapse
|
8
|
Wu Z, Yu X, Zhang S, He Y, Guo W. The role of PI3K/AKT signaling pathway in gallbladder carcinoma. Am J Transl Res 2022; 14:4426-4442. [PMID: 35958463 PMCID: PMC9360899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES The prognosis of gallbladder carcinoma (GBC) is poor, with a less than 5% five-year survival rate. Identifying the mechanisms underlying GBC occurrence and advancement is necessary to improve GBC patient prognosis and survival rates. The phosphatidylinositol 3-kinase (PI3K)/serine-threonine kinase (AKT) pathway is involved in cancer deterioration, tumor growth, cell proliferation, and distant metastasis. Studying the impacts of the PI3K/AKT pathway has resulted in the identification of key factors involved in GBC progression that might serve as therapeutic targets, promoting the development of new treatments. METHODS We reviewed recent literature exploring abnormal regulation of the PI3K/AKT pathway in gallbladder cancer, with a focus on abnormal RNA levels, protein level regulation, and drug treatment advances. RESULTS Further investigation of the regulation of small molecules and proteins by the PI3K/AKT pathway might ultimately provide new diagnostic or prognostic markers or cancer treatment targets. Recent studies have focused on RNA and proteins involved in the regulation of the cell cycle or cell movement in cancer progression via PI3K/AKT pathway, the use of anticancer drug combinations, or the anticancer effects of drugs not currently utilized for cancer treatment. CONCLUSIONS We herein review the known available molecules that affect the PI3K/AKT pathway in patients with GBC and the mechanisms of drug action associated with this pathway.
Collapse
Affiliation(s)
- Zeyu Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhou 450052, Henan, China
- Henan Key Laboratory of Digestive Organ TransplantationZhengzhou 450052, Henan, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhou 450052, Henan, China
- Henan Key Laboratory of Digestive Organ TransplantationZhengzhou 450052, Henan, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhou 450052, Henan, China
- Henan Key Laboratory of Digestive Organ TransplantationZhengzhou 450052, Henan, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhou 450052, Henan, China
- Henan Key Laboratory of Digestive Organ TransplantationZhengzhou 450052, Henan, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhou 450052, Henan, China
- Henan Key Laboratory of Digestive Organ TransplantationZhengzhou 450052, Henan, China
| |
Collapse
|
9
|
Harper MM, Lin M, Qasem SA, Patel RA, Cavnar MJ, Pandalai PK, Gao M, Kim J. Endogenous Pancreatic Cancer Cell PD-1 Activates MET and Induces Epithelial-Mesenchymal Transition to Promote Cancer Progression. Cancers (Basel) 2022; 14:3051. [PMID: 35804822 PMCID: PMC9264908 DOI: 10.3390/cancers14133051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/09/2022] [Accepted: 06/17/2022] [Indexed: 11/24/2022] Open
Abstract
We recently demonstrated that immune checkpoint PD-1 was endogenously expressed in pancreatic ductal adenocarcinoma (PDAC) cells. Our data indicated that PD-1 proteins are not exclusive to immune cells and have unrecognized signal transduction cascades intrinsic to cancer cells. Building on this paradigm shift, we sought to further characterize PD-1 expression in PDAC. We utilized a phospho-explorer array to identify pathways upregulated by PD-1 signaling. We discovered PD-1-mediated activation of the proto-oncogene MET in PDAC cells, which was dependent on hepatocyte growth factor (MET ligand) and not secondary to direct protein interaction. We then discovered that the PD-1/MET axis in PDAC cells regulated growth, migration, and invasion. Importantly, the PD-1/MET axis induced epithelial-to-mesenchymal transition (EMT), a well-established early oncogenic process in PDAC. We observed that combined targeting of PDAC cell PD-1 and MET resulted in substantial direct tumor cell cytotoxicity and growth inhibition in PDAC cell lines, patient-derived organoids, and patient-derived xenografts independent of cytotoxic immune responses. This is the first report of PDAC-endogenous PD-1 expression regulating MET signaling, which builds upon our growing body of work showing the oncogenic phenotype of PD-1 expression in PDAC cells is distinct from its immunogenic role. These results highlight a paradigm shift that the tumor-specific PD-1 axis is a novel target to effectively kill PDAC cells by antagonizing previously unrecognized PD-1-dependent oncogenic pathways.
Collapse
Affiliation(s)
- Megan M. Harper
- Division of Surgical Oncology, University of Kentucky, Lexington, KY 40536, USA; (M.M.H.); (M.L.); (M.J.C.); (P.K.P.); (M.G.)
| | - Miranda Lin
- Division of Surgical Oncology, University of Kentucky, Lexington, KY 40536, USA; (M.M.H.); (M.L.); (M.J.C.); (P.K.P.); (M.G.)
| | - Shadi A. Qasem
- Department of Pathology & Laboratory Medicine, University of Kentucky, Lexington, KY 40536, USA;
| | - Reema A. Patel
- Division of Medical Oncology, University of Kentucky, Lexington, KY 40536, USA;
| | - Michael J. Cavnar
- Division of Surgical Oncology, University of Kentucky, Lexington, KY 40536, USA; (M.M.H.); (M.L.); (M.J.C.); (P.K.P.); (M.G.)
| | - Prakash K. Pandalai
- Division of Surgical Oncology, University of Kentucky, Lexington, KY 40536, USA; (M.M.H.); (M.L.); (M.J.C.); (P.K.P.); (M.G.)
| | - Mei Gao
- Division of Surgical Oncology, University of Kentucky, Lexington, KY 40536, USA; (M.M.H.); (M.L.); (M.J.C.); (P.K.P.); (M.G.)
| | - Joseph Kim
- Division of Surgical Oncology, University of Kentucky, Lexington, KY 40536, USA; (M.M.H.); (M.L.); (M.J.C.); (P.K.P.); (M.G.)
| |
Collapse
|
10
|
Zhao W, Xu Y, Guo Q, Qian W, Zhu C, Zheng M. A novel anti-lung cancer agent inhibits proliferation and epithelial-mesenchymal transition. J Int Med Res 2022; 50:3000605211066300. [PMID: 35477254 PMCID: PMC9087257 DOI: 10.1177/03000605211066300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To synthesize a novel chalcone-1,3,4-thiadiazole hybrid and investigate its anticancer effects against NCI-H460 cells. METHODS (E)-3-(4-bromophenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one, 1,3-dibromopropane and 1,3,4-thiadiazole-2-thiol were used as chemical materials to synthesize compound ZW97. The NCI-H460 lung cancer cell line was selected to explore the antitumor effects of compound ZW97 in vitro and in vivo. RESULTS Compound ZW97 selectively inhibited cell proliferation against lung cancer cell lines NCI-H460, HCC-44 and NCI-H3122 with IC50 values of 0.15 μM, 2.06 μM and 1.17 μM, respectively. ZW97 suppressed migration and the epithelial-mesenchymal transition process in NCI-H460 cells in a concentration-dependent manner. Based on the kinase activity results and docking analysis, compound ZW97 is a novel tyrosine-protein kinase Met (c-Met kinase) inhibitor. It also inhibited NCI-H460 cell growth in xenograft models without obvious toxicity to normal tissues. CONCLUSIONS Compound ZW97 is a potential c-Met inhibitor that might be a promising agent to treat lung cancer by inhibiting the epithelial-mesenchymal transition process.
Collapse
Affiliation(s)
- Wen Zhao
- Department of Thoracic Surgery, Tongren Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Ye Xu
- Department of Thoracic Surgery, Tongren Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Qingkui Guo
- Department of Thoracic Surgery, Tongren Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Wenliang Qian
- Department of Thoracic Surgery, Tongren Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Chen Zhu
- Department of Thoracic Surgery, Tongren Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Min Zheng
- Department of Thoracic Surgery, Tongren Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| |
Collapse
|
11
|
The Relationship between MACC1/c-Met/Cyclin D1 Axis Expression and Prognosis in ESCC. Anal Cell Pathol 2022; 2022:9651503. [PMID: 35242498 PMCID: PMC8888107 DOI: 10.1155/2022/9651503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/29/2022] [Accepted: 02/03/2022] [Indexed: 12/24/2022] Open
Abstract
Background Esophageal cancer is one of the most common malignant tumors of the digestive system, with high incidence and mortality. Methods Immunohistochemical method was used to detect the expression of MACC1, c-Met, and cyclin D1 in ESCC and its adjacent tissues. Statistical analysis was done by SPSS 23.0. Results The high expression of MACC1 and cyclin D1 was significantly correlated with tumor size. High c-Met expression was associated with patient ethnicity. MACC1 expression was positively correlated with both c-Met and cyclin D1. c-Met expression was also positively correlated with cyclin D1. Patients with high expression of MACC1 and c-Met had worse OS; patients with high c-Met expression also had worse PFS. Conclusion MACC1, c-Met, and cyclin D1 proteins are closely related to the occurrence and development of esophageal squamous cell carcinoma. MACC1 may affect the prognosis of ESCC by regulating the expression of the c-Met/cyclin D1 axis.
Collapse
|
12
|
Tanaka R, Terai M, Londin E, Sato T. The Role of HGF/MET Signaling in Metastatic Uveal Melanoma. Cancers (Basel) 2021; 13:cancers13215457. [PMID: 34771620 PMCID: PMC8582360 DOI: 10.3390/cancers13215457] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 01/01/2023] Open
Abstract
Simple Summary Hepatocyte growth factor (HGF)/mesenchymal-epithelial transition factor (MET) signaling plays an important role in the metastatic formation and therapeutic resistance to uveal melanoma. Here, we review the various functions of MET signaling contributing to metastatic formation, as well as review resistance to treatments in metastatic uveal melanoma. Abstract Hepatocyte growth factor (HGF)/mesenchymal-epithelial transition factor (MET) signaling promotes tumorigenesis and tumor progression in various types of cancer, including uveal melanoma (UM). The roles of HGF/MET signaling have been studied in cell survival, proliferation, cell motility, and migration. Furthermore, HGF/MET signaling has emerged as a critical player not only in the tumor itself but also in the tumor microenvironment. Expression of MET is frequently observed in metastatic uveal melanoma and is associated with poor prognosis. It has been reported that HGF/MET signaling pathway activation is the major mechanism of treatment resistance in metastatic UM (MUM). To achieve maximal therapeutic benefit in MUM patients, it is important to understand how MET signaling drives cellular functions in uveal melanoma cells. Here, we review the HGF/MET signaling biology and the role of HGF/MET blockades in uveal melanoma.
Collapse
Affiliation(s)
- Ryota Tanaka
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (R.T.); (T.S.)
| | - Mizue Terai
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (R.T.); (T.S.)
- Correspondence: ; Tel.: +1-215-955-4780
| | - Eric Londin
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Takami Sato
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (R.T.); (T.S.)
| |
Collapse
|
13
|
Ahmad R, Singh JK, Wunnava A, Al-Obeed O, Abdulla M, Srivastava SK. Emerging trends in colorectal cancer: Dysregulated signaling pathways (Review). Int J Mol Med 2021; 47:14. [PMID: 33655327 PMCID: PMC7834960 DOI: 10.3892/ijmm.2021.4847] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third most frequently detected type of cancer, and the second most common cause of cancer‑related mortality globally. The American Cancer Society predicted that approximately 147,950 individuals would be diagnosed with CRC, out of which 53,200 individuals would succumb to the disease in the USA alone in 2020. CRC‑related mortality ranks third among both males and females in the USA. CRC arises from 3 major pathways: i) The adenoma‑carcinoma sequence; ii) serrated pathway; and iii) the inflammatory pathway. The majority of cases of CRC are sporadic and result from risk factors, such as a sedentary lifestyle, obesity, processed diets, alcohol consumption and smoking. CRC is also a common preventable cancer. With widespread CRC screening, the incidence and mortality from CRC have decreased in developed countries. However, over the past few decades, CRC cases and mortality have been on the rise in young adults (age, <50 years). In addition, CRC cases are increasing in developing countries with a low gross domestic product (GDP) due to lifestyle changes. CRC is an etiologically heterogeneous disease classified by tumor location and alterations in global gene expression. Accumulating genetic and epigenetic perturbations and aberrations over time in tumor suppressor genes, oncogenes and DNA mismatch repair genes could be a precursor to the onset of colorectal cancer. CRC can be divided as sporadic, familial, and inherited depending on the origin of the mutation. Germline mutations in APC and MLH1 have been proven to play an etiological role, resulting in the predisposition of individuals to CRC. Genetic alterations cause the dysregulation of signaling pathways leading to drug resistance, the inhibition of apoptosis and the induction of proliferation, invasion and migration, resulting in CRC development and metastasis. Timely detection and effective precision therapies based on the present knowledge of CRC is essential for successful treatment and patient survival. The present review presents the CRC incidence, risk factors, dysregulated signaling pathways and targeted therapies.
Collapse
Affiliation(s)
- Rehan Ahmad
- Colorectal Research Chair, Department of Surgery, King Saud University College of Medicine, Riyadh 11472, Saudi Arabia
| | - Jaikee Kumar Singh
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan 303007, India
| | - Amoolya Wunnava
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan 303007, India
| | - Omar Al-Obeed
- Colorectal Research Chair, Department of Surgery, King Saud University College of Medicine, Riyadh 11472, Saudi Arabia
| | - Maha Abdulla
- Colorectal Research Chair, Department of Surgery, King Saud University College of Medicine, Riyadh 11472, Saudi Arabia
| | | |
Collapse
|