1
|
Hogg EKJ, Findlay GM. Functions of SRPK, CLK and DYRK kinases in stem cells, development, and human developmental disorders. FEBS Lett 2023; 597:2375-2415. [PMID: 37607329 PMCID: PMC10952393 DOI: 10.1002/1873-3468.14723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 08/24/2023]
Abstract
Human developmental disorders encompass a wide range of debilitating physical conditions and intellectual disabilities. Perturbation of protein kinase signalling underlies the development of some of these disorders. For example, disrupted SRPK signalling is associated with intellectual disabilities, and the gene dosage of DYRKs can dictate the pathology of disorders including Down's syndrome. Here, we review the emerging roles of the CMGC kinase families SRPK, CLK, DYRK, and sub-family HIPK during embryonic development and in developmental disorders. In particular, SRPK, CLK, and DYRK kinase families have key roles in developmental signalling and stem cell regulation, and can co-ordinate neuronal development and function. Genetic studies in model organisms reveal critical phenotypes including embryonic lethality, sterility, musculoskeletal errors, and most notably, altered neurological behaviours arising from defects of the neuroectoderm and altered neuronal signalling. Further unpicking the mechanisms of specific kinases using human stem cell models of neuronal differentiation and function will improve our understanding of human developmental disorders and may provide avenues for therapeutic strategies.
Collapse
Affiliation(s)
- Elizabeth K. J. Hogg
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeUK
| | - Greg M. Findlay
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeUK
| |
Collapse
|
2
|
Garufi A, D’Orazi V, Pistritto G, Cirone M, D’Orazi G. The Sweet Side of HIPK2. Cancers (Basel) 2023; 15:2678. [PMID: 37345014 PMCID: PMC10216817 DOI: 10.3390/cancers15102678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 06/23/2023] Open
Abstract
HIPK2 is an evolutionary conserved protein kinase which modulates many molecular pathways involved in cellular functions such as apoptosis, DNA damage response, protein stability, and protein transcription. HIPK2 plays a key role in the cancer cell response to cytotoxic drugs as its deregulation impairs drug-induced cancer cell death. HIPK2 has also been involved in regulating fibrosis, angiogenesis, and neurological diseases. Recently, hyperglycemia was found to positively and/or negatively regulate HIPK2 activity, affecting not only cancer cell response to chemotherapy but also the progression of some diabetes complications. The present review will discuss how HIPK2 may be influenced by the high glucose (HG) metabolic condition and the consequences of such regulation in medical conditions.
Collapse
Affiliation(s)
- Alessia Garufi
- Unit of Cellular Networks, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Valerio D’Orazi
- Department of Surgery, Sapienza University, 00185 Rome, Italy;
| | - Giuseppa Pistritto
- Centralized Procedures Office, Italian Medicines Agency (AIFA), 00187 Rome, Italy;
| | - Mara Cirone
- Laboratory Affiliated to Pasteur Institute Italy Foundation Cenci Bolognetti, Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Gabriella D’Orazi
- Unit of Cellular Networks, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
- Department of Neurosciences, Imaging and Clinical Sciences, University “G. D’Annunzio”, 66013 Chieti, Italy
| |
Collapse
|
3
|
Li Z, Kim H, Kim J, Park JH. EP400NL is involved in PD-L1 gene activation by forming a transcriptional coactivator complex. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194889. [PMID: 36328277 DOI: 10.1016/j.bbagrm.2022.194889] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022]
Abstract
EP400 is an ATP-dependent chromatin remodelling enzyme that regulates DNA double-strand break repair and transcription, including cMyc-dependent gene expression. We previously showed that the N-terminal domain of EP400 increases the efficacy of chemotherapeutic drugs against cancer cells. As the EP400 N-terminal-Like (EP400NL) gene resides next to the EP400 gene locus, this prompted us to investigate whether EP400NL plays a similar role in transcriptional regulation to the full-length EP400 protein. We found that EP400NL forms a human NuA4-like chromatin remodelling complex that lacks both the TIP60 histone acetyltransferase and EP400 ATPase. However, this EP400NL complex displays H2A.Z deposition activity on a chromatin template comparable to the human NuA4 complex, suggesting another associated ATPase such as BRG1 or RuvBL1/RuvBL2 catalyses the reaction. We demonstrated that the transcriptional coactivator function of EP400NL is required for serum and IFNγ-induced PD-L1 gene activation. Furthermore, transcriptome analysis indicates that EP400NL contributes to cMyc-responsive mitochondrial biogenesis. Taken together, our studies show that EP400NL plays a role as a transcription coactivator of PD-L1 gene regulation and provides a potential target to modulate cMyc functions in cancer therapy.
Collapse
Affiliation(s)
- Zidong Li
- School of Natural Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Hyoungmin Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea.
| | - Jaehoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea.
| | - Jeong Hyeon Park
- School of Natural Sciences, Massey University, Palmerston North 4442, New Zealand; Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
4
|
Pfisterer M, Schmitz ML. Testing the Effect of Histone Acetyltransferases on Local Chromatin Compaction. Methods Mol Biol 2023; 2589:361-376. [PMID: 36255637 DOI: 10.1007/978-1-0716-2788-4_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Experiments determining the chromatin association of histone acetylases (HATs) and deacetylases (HDACs) at the genome-wide level provide precise maps of locus occupancy, but do not allow conclusions on the functional consequences of this locus-specific enrichment. Here we describe a protocol that allows tethering of HATs or HDACs to specific genomic loci upon fusion with a fluorescent protein and a DNA-binding protein such as the E. coli Lac repressor (LacI), which binds to genomically inserted lac operon sequences (lacO) via DNA/protein interactions. Integration of these lacO sequences into a genomic region of interest allows to monitor the functional consequences of HAT/HDAC targeting on chromatin (de)compaction, histone modification, and interaction with other proteins by quantitative light microscopy, as described here. As DNA-binding of LacI can be tightly controlled by the addition of galactose-derivatives, this method also allows to monitor the effects of locus-specific recruitment in a time-resolved manner.
Collapse
Affiliation(s)
| | - M Lienhard Schmitz
- Institute of Biochemistry, Justus-Liebig-University, Giessen, Germany.
- Member of the German Center for Lung Research, Giessen, Germany.
| |
Collapse
|
5
|
Liu L, Weiß A, Saul VV, Schermuly RT, Pleschka S, Schmitz ML. Comparative kinase activity profiling of pathogenic influenza A viruses reveals new anti- and pro-viral protein kinases. J Gen Virol 2022; 103. [PMID: 35771598 DOI: 10.1099/jgv.0.001762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Constant evolution of influenza A viruses (IAVs) leads to the occurrence of new virus strains, which can cause epidemics and occasional pandemics. Here we compared two medically relevant IAVs, namely A/Hamburg/4/09 (H1N1pdm09) of the 2009 pandemic and the highly pathogenic avian IAV human isolate A/Thailand/1(KAN-1)/2004 (H5N1), for their ability to trigger intracellular phosphorylation patterns using a highly sensitive peptide-based kinase activity profiling approach. Virus-dependent tyrosine phosphorylations of substrate peptides largely overlap between the two viruses and are also strongly overrepresented in comparison to serine/threonine peptide phosphorylations. Both viruses trigger phosphorylations with distinct kinetics by overlapping and different kinases from which many form highly interconnected networks. As approximately half of the kinases forming a signalling hub have no known function for the IAV life cycle, we interrogated selected members of this group for their ability to interfere with IAV replication. These experiments revealed negative regulation of H1N1pdm09 and H5N1 replication by NUAK [novel (nua) kinase] kinases and by redundant ephrin A (EphA) receptor tyrosine kinases.
Collapse
Affiliation(s)
- Lu Liu
- Institute of Biochemistry, Justus-Liebig-University Giessen (Germany), Member of the German Center for Lung Research, Germany.,Institute of Medical Virology, Justus Liebig University Giessen, Germany
| | - Astrid Weiß
- Department of Internal Medicine, Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Germany
| | - Vera Vivian Saul
- Institute of Biochemistry, Justus-Liebig-University Giessen (Germany), Member of the German Center for Lung Research, Germany
| | - Ralph Theo Schermuly
- Department of Internal Medicine, Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Germany
| | - Stephan Pleschka
- Institute of Medical Virology, Justus Liebig University Giessen, Germany.,German Center for Infection Research (DZIF), partner site Giessen, Germany
| | - M Lienhard Schmitz
- Institute of Biochemistry, Justus-Liebig-University Giessen (Germany), Member of the German Center for Lung Research, Germany
| |
Collapse
|
6
|
Schmitz ML, Dreute J, Pfisterer M, Günther S, Kracht M, Chillappagari S. SIAH ubiquitin E3 ligases as modulators of inflammatory gene expression. Heliyon 2022; 8:e09029. [PMID: 35284677 PMCID: PMC8904615 DOI: 10.1016/j.heliyon.2022.e09029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/19/2021] [Accepted: 02/24/2022] [Indexed: 12/04/2022] Open
Abstract
The functionally redundant ubiquitin E3 ligases SIAH1 and SIAH2 have been implicated in the regulation of metabolism and the hypoxic response, while their role in other signal-mediated processes such inflammatory gene expression remains to be defined. Here we have downregulated the expression of both SIAH proteins with specific siRNAs and investigated the functional consequences for IL-1α-induced gene expression. The knockdown of SIAH1/2 modulated the expression of approximately one third of IL-1α-regulated genes. These effects were not due to changes in the NF-κB and MAPK signaling pathways and rather employed further processes including those mediated by the coactivator p300. Most of the proteins encoded by SIAH1/2-regulated genes form a regulatory network of proinflammatory factors. Thus SIAH1/2 proteins function as variable rheostats that control the amplitude rather than the principal activation of the inflammatory gene response. SIAH1/2 function as modulators of IL-1α-triggered gene expression. SIAH1/2 do not participate in the activation of the canonical NF-κB pathway. SIAH1/2 control the stability of the coactivator p300.
Collapse
|
7
|
Kinsey SD, Vinluan JP, Shipman GA, Verheyen EM. Expression of human HIPKs in Drosophila demonstrates their shared and unique functions in a developmental model. G3 GENES|GENOMES|GENETICS 2021; 11:6380948. [PMID: 34849772 PMCID: PMC8673556 DOI: 10.1093/g3journal/jkab350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/21/2021] [Indexed: 12/27/2022]
Abstract
Homeodomain-interacting protein kinases (HIPKs) are a family of four conserved proteins essential for vertebrate development, as demonstrated by defects in the eye, brain, and skeleton that culminate in embryonic lethality when multiple HIPKs are lost in mice. While HIPKs are essential for development, functional redundancy between the four vertebrate HIPK paralogues has made it difficult to compare their respective functions. Because understanding the unique and shared functions of these essential proteins could directly benefit the fields of biology and medicine, we addressed the gap in knowledge of the four vertebrate HIPK paralogues by studying them in the fruit fly Drosophila melanogaster, where reduced genetic redundancy simplifies our functional assessment. The single hipk present in the fly allowed us to perform rescue experiments with human HIPK genes that provide new insight into their individual functions not easily assessed in vertebrate models. Furthermore, the abundance of genetic tools and established methods for monitoring specific developmental pathways and gross morphological changes in the fly allowed for functional comparisons in endogenous contexts. We first performed rescue experiments to demonstrate the extent to which each of the human HIPKs can functionally replace Drosophila Hipk for survival and morphological development. We then showed the ability of each human HIPK to modulate Armadillo/β-catenin levels, JAK/STAT activity, proliferation, growth, and death, each of which have previously been described for Hipks, but never all together in comparable tissue contexts. Finally, we characterized novel developmental phenotypes induced by human HIPKs to gain insight to their unique functions. Together, these experiments provide the first direct comparison of all four vertebrate HIPKs to determine their roles in a developmental context.
Collapse
Affiliation(s)
- Stephen D Kinsey
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Justin P Vinluan
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Gerald A Shipman
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Esther M Verheyen
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|