1
|
Tolue Ghasaban F, Moghbeli M. Long non-coding RNAs as the pivotal regulators of epithelial mesenchymal transition through WNT/β-catenin signaling pathway in tumor cells. Pathol Res Pract 2024; 263:155683. [PMID: 39471528 DOI: 10.1016/j.prp.2024.155683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/25/2024] [Indexed: 11/01/2024]
Abstract
Tumor cell invasion is considered as one of the main therapeutic challenges in cancer patients, which leads to distant metastasis and reduced prognosis. Therefore, investigation of the factors involved in tumor cell invasion improves the therapeutic methods to reduce tumor metastasis. Epithelial-mesenchymal transition (EMT) process has a pivotal role in tumor cell invasion and metastasis, during which tumor cells gain the invasive ability by losing epithelial characteristics and acquiring mesenchymal characteristics. WNT/β-catenin signaling pathway has a key role in tumor cell invasion by regulation of EMT process. Long non-coding RNAs (lncRNAs) have also an important role in EMT process through the regulation of WNT/β-catenin pathway. Deregulation of lncRNAs is associated with tumor metastasis in different tumor types. Therefore, in the present review, we investigated the role of lncRNAs in EMT process and tumor cell invasion through the regulation of WNT/β-catenin pathway. It has been reported that lncRNAs mainly induced the EMT process and tumor cell invasion through the activation of WNT/β-catenin pathway. LncRNAs that regulate the WNT/β-catenin mediated EMT process can be introduced as the prognostic markers as well as suitable therapeutic targets to reduce the tumor metastasis in cancer patients.
Collapse
Affiliation(s)
- Faezeh Tolue Ghasaban
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Li P, Ma X, Huang D. Role of the lncRNA/Wnt signaling pathway in digestive system cancer: a literature review. Eur J Med Res 2024; 29:447. [PMID: 39218950 PMCID: PMC11367813 DOI: 10.1186/s40001-024-02033-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
The long noncoding RNA (lncRNA)/Wingless (Wnt) axis is often dysregulated in digestive system tumors impacting critical cellular processes. Abnormal expression of specific Wnt-related lncRNAs such as LINC01606 (promotes motility), SLCO4A1-AS1 (promotes motility), and SH3BP5-AS1 (induces chemoresistance), plays a crucial role in these malignancies. These lncRNAs are promising targets for cancer diagnosis and therapy, offering new treatment perspectives. The lncRNAs, NEF and GASL1, differentially expressed in plasma show diagnostic potential for esophageal squamous cell carcinoma and gastric cancer, respectively. Additionally, Wnt pathway inhibitors like XAV-939 have demonstrated preclinical efficacy, underscoring their therapeutic potential. This review comprehensively analyzes the lncRNA/Wnt axis, highlighting its impact on cell proliferation, motility, and chemoresistance. By elucidating the complex molecular mechanisms of the lncRNA/Wnt axis, we aim to identify potential therapeutic targets for digestive system tumors to pave the way for the development of targeted treatment strategies.
Collapse
Affiliation(s)
- Penghui Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China.
| | - Xiao Ma
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Di Huang
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| |
Collapse
|
3
|
Wu W, Li A, He H, Ye S, Zhou Z, Quan JH, Tan W. Long noncoding RNA LINC01550 inhibits colorectal cancer malignancy by suppressing the Wnt/β-catenin signaling pathway. J Biochem Mol Toxicol 2024; 38:e23774. [PMID: 39041324 DOI: 10.1002/jbt.23774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/20/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024]
Abstract
Colorectal cancer (CRC) is a common gastrointestinal malignancy. Long noncoding RNAs (lncRNAs) are associated with the progression of various cancers, including CRC. Herein, we explored the function of lncRNA LINC01550 in CRC. LINC01550 expression in CRC was analyzed using The Cancer Genome Atlas (TCGA). The diagnostic value of LINC01550 was evaluated using ROC curves. The relationship between clinicopathological variables and LINC01550 expression was explored, and its prognostic value was assessed using Kaplan-Meier and Cox regression analyses. The relationship between LINC01550 expression and immune cell infiltration was analyzed using CIBERSORT. Tumor-associated mutations and drug sensitivity were compared between high and low LINC01550 expression groups. The effects of LINC01550 overexpression on CRC cells were investigated using CCK-8, flow cytometry, wound healing, Transwell, qRT-PCR, and western blot assays. LINC01550 was downregulated in CRC tissues, and the low expression of LINC01550 was correlated with advanced stage and metastasis. CRC patients with low LINC01550 expression had poorer overall survival. LINC01550 expression was an independent risk factor for CRC prognosis. APC and TP53 mutations were more frequent in the low LINC01550 expression group, while the high LINC01550 expression group was significantly more sensitive to 5-fluorouracil, irinotecan, trametinib, gemcitabine, rapamycin, and XAV939. LINC01550 overexpression suppressed the proliferation, migration, invasion, and epithelial-mesenchymal transition of HCT-116 and HT-29 cells and promoted apoptosis. LINC01550 exerted these effects by inhibiting Wnt/β-catenin signaling. Our results suggest LINC01550 as a diagnostic and prognostic predictor in CRC that acts as a tumor suppressor and a potential therapeutic target.
Collapse
Affiliation(s)
- Weiyun Wu
- Laboratory of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Aiting Li
- Laboratory of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Huanjin He
- Laboratory of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shicai Ye
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhuliang Zhou
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Juan-Hua Quan
- Laboratory of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wenkai Tan
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
4
|
Sun L, Xing J, Zhou X, Song X, Gao S. Wnt/β-catenin signalling, epithelial-mesenchymal transition and crosslink signalling in colorectal cancer cells. Biomed Pharmacother 2024; 175:116685. [PMID: 38710151 DOI: 10.1016/j.biopha.2024.116685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024] Open
Abstract
Colorectal cancer (CRC), with its significant incidence and metastatic rates, profoundly affects human health. A common oncogenic event in CRC is the aberrant activation of the Wnt/β-catenin signalling pathway, which drives both the initiation and progression of the disease. Persistent Wnt/β-catenin signalling facilitates the epithelial-mesenchymal transition (EMT), which accelerates CRC invasion and metastasis. This review provides a summary of recent molecular studies on the role of the Wnt/β-catenin signalling axis in regulating EMT in CRC cells, which triggers metastatic pathogenesis. We present a comprehensive examination of the EMT process and its transcriptional controllers, with an emphasis on the crucial functions of β-catenin, EMT transcription factors (EMT-TFs). We also review recent evidences showing that hyperactive Wnt/β-catenin signalling triggers EMT and metastatic phenotypes in CRC via "Destruction complex" of β-catenin mechanisms. Potential therapeutic and challenges approache to suppress EMT and prevent CRC cells metastasis by targeting Wnt/β-catenin signalling are also discussed. These include direct β-catenin inhibitors and novel targets of the Wnt pathway, and finally highlight novel potential combinational treatment options based on the inhibition of the Wnt pathway.
Collapse
Affiliation(s)
- Luanbiao Sun
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Jianpeng Xing
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Xuanpeng Zhou
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Xinyuan Song
- The Chinese University of Hong Kong, New Territories 999077, Hong Kong Special Administrative Region of China
| | - Shuohui Gao
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China.
| |
Collapse
|
5
|
Andrabi MQ, Kesavan Y, Ramalingam S. Non-coding RNAs as Biomarkers for Survival in Colorectal Cancer Patients. Curr Aging Sci 2024; 17:5-15. [PMID: 36733201 DOI: 10.2174/1874609816666230202101054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/25/2022] [Accepted: 12/19/2022] [Indexed: 02/04/2023]
Abstract
Colorectal cancer (CRC) has a high incidence and fatality rate worldwide. It ranks second concerning death worldwide. Cancer patients are diagnosed with the disease at a later stage due to the absence of early diagnostic methods, which leads to increased death. With the help of recent advancements in the fields of diagnosis and therapy, the development of novel methods using new targets could be helpful for the long-term survival of CRC patients when CRC is detected early. However, the prognosis for the advanced stage of CRC is abysmal. New biomarkers are emerging as promising alternatives since they can be utilized for early detection of CRC, are simple to use, and non-invasive. Non-coding RNAs (ncRNAs) have been seen to have an aberrant expression in the development of many malignancies, including CRC. In the past two decades, much research has been done on non-coding RNAs, which may be valuable as biomarkers and targets for antitumor therapy. Non-coding RNAs can be employed in detecting and treating CRC. Non-coding RNAs play an essential role in regulating gene expression. This article reviews ncRNAs and their expression levels in CRC patients that could be used as potential biomarkers. Various ncRNAs have been associated with CRC, such as microRNAs, long non-coding RNAs, circular RNAs, etc. The expression of these non-coding RNAs may provide insights into the stages of cancer and the prognosis of cancer patients and therefore proper precautionary measures can be taken to decrease cancer-related deaths.
Collapse
Affiliation(s)
- Mohammad Qasim Andrabi
- Department of Genetic Engineering, School of Bio-Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Yasodha Kesavan
- Department of Biotechnology, School of Bio-Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Satish Ramalingam
- Department of Genetic Engineering, School of Bio-Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| |
Collapse
|
6
|
Zhu HX, Zheng WC, Chen H, Chen JY, Lin F, Chen SH, Xue XY, Zheng QS, Liang M, Xu N, Chen DN, Sun XL. Exploring Novel Genome Instability-associated lncRNAs and their Potential Function in Pan-Renal Cell Carcinoma. Comb Chem High Throughput Screen 2024; 27:1788-1807. [PMID: 37957851 DOI: 10.2174/0113862073258779231020052115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 11/15/2023]
Abstract
OBJECTIVE Genomic instability can drive clonal evolution, continuous modification of tumor genomes, and tumor genomic heterogeneity. The molecular mechanism of genomic instability still needs further investigation. This study aims to identify novel genome instabilityassociated lncRNAs (GI-lncRNAs) and investigate the role of genome instability in pan-Renal cell carcinoma (RCC). MATERIALS AND METHODS A mutator hypothesis was employed, combining the TCGA database of somatic mutation (SM) information, to identify GI-lncRNAs. Subsequently, a training cohort (n = 442) and a testing cohort (n = 439) were formed by randomly dividing all RCC patients. Based on the training cohort dataset, a multivariate Cox regression analysis lncRNAs risk model was created. Further validations were performed in the testing cohort, TCGA cohort, and different RCC subtypes. To confirm the relative expression levels of lncRNAs in HK-2, 786-O, and 769-P cells, qPCR was carried out. Functional pathway enrichment analyses were performed for further investigation. RESULTS A total of 170 novel GI-lncRNAs were identified. The lncRNA prognostic risk model was constructed based on LINC00460, AC073218.1, AC010789.1, and COLCA1. This risk model successfully differentiated patients into distinct risk groups with significantly different clinical outcomes. The model was further validated in multiple independent patient cohorts. Additionally, functional and pathway enrichment analyses revealed that GI-lncRNAs play a crucial role in GI. Furthermore, the assessments of immune response, drug sensitivity, and cancer stemness revealed a significant relationship between GI-lncRNAs and tumor microenvironment infiltration, mutational burden, microsatellite instability, and drug resistance. CONCLUSIONS In this study, we discovered four novel GI-lncRNAs and developed a novel signature that effectively predicted clinical outcomes in pan-RCC. The findings provide valuable insights for pan-RCC immunotherapy and shed light on potential underlying mechanisms.
Collapse
Affiliation(s)
- Hui-Xin Zhu
- Department of Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Wen-Cai Zheng
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Hang Chen
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Jia-Yin Chen
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Fei Lin
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Shao-Hao Chen
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Xue-Yi Xue
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Qing-Shui Zheng
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Min Liang
- Department of Anesthesiology, Anesthesiology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Ning Xu
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Dong-Ning Chen
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Xiong-Lin Sun
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| |
Collapse
|
7
|
Unraveling the function of epithelial-mesenchymal transition (EMT) in colorectal cancer: Metastasis, therapy response, and revisiting molecular pathways. Biomed Pharmacother 2023; 160:114395. [PMID: 36804124 DOI: 10.1016/j.biopha.2023.114395] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Colorectal cancer (CRC) is a dangerous form of cancer that affects the gastrointestinal tract. It is a major global health concern, and the aggressive behavior of tumor cells makes it difficult to treat, leading to poor survival rates for patients. One major challenge in treating CRC is the metastasis, or spread, of the cancer, which is a major cause of death. In order to improve the prognosis for patients with CRC, it is necessary to focus on ways to inhibit the cancer's ability to invade and spread. Epithelial-mesenchymal transition (EMT) is a process that is linked to the spread of cancer cells, also known as metastasis. The process transforms epithelial cells into mesenchymal ones, increasing their mobility and ability to invade other tissues. This has been shown to be a key mechanism in the progression of colorectal cancer (CRC), a particularly aggressive form of gastrointestinal cancer. The activation of EMT leads to increases in the spread of CRC cells, and during this process, levels of the protein E-cadherin decrease while levels of N-cadherin and vimentin increase. EMT also contributes to the development of resistance to chemotherapy and radiation therapy in CRC. Non-coding RNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), play a role in regulating EMT in CRC, often through their ability to "sponge" microRNAs. Anti-cancer agents have been shown to suppress EMT and reduce the progression and spread of CRC cells. These findings suggest that targeting EMT or related mechanisms may be a promising approach for treating CRC patients in the clinic.
Collapse
|
8
|
Li R, Xu H, Gao X. The ceRNA network regulates epithelial-mesenchymal transition in colorectal cancer. Heliyon 2023; 9:e14143. [PMID: 36950593 PMCID: PMC10025087 DOI: 10.1016/j.heliyon.2023.e14143] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a biological process that transforms epithelial cells into a mesenchymal phenotype, conferring cell migration and invasion capabilities. EMT is involved in the progression and metastasis of colorectal cancer (CRC). Recently, emerging evidence has shown dysregulation of non-coding RNA (ncRNA) was linked to EMT. ncRNAs, including long non-coding RNA (lncRNA), regulate the transcription of downstream target genes (mRNA) through interaction with microRNAs (miRNAs); these are termed competitive endogenous RNA (ceRNA) networks. CeRNA dysregulation-induced EMT, which is linked to the progression and prognosis of CRC, has attracted wide attention. However, understanding the role of the regulation of the ceRNA network in the EMT of CRC remains limited. We discuss the molecular functions of lncRNA, the ceRNA networks related to miRNAs and mRNAs in EMT, as well as EMT transcription factors, such as the zinc finger E-box binding homeobox 1/2 (ZEB1/2), SNAIL, SLUG, and TWIST1/2. In addition, miRNAs and lncRNAs that directly target genes, thereby initiating different signaling pathways to promote EMT in CRC, were summarized. Clarifying the role of these molecules in EMT is critical for understanding molecular mechanisms and exploring the potential therapeutic targets of CRC.
Collapse
Affiliation(s)
- Ruina Li
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Hui Xu
- The Center of Clinical Laboratory, Hainan General Hospital, Haikou 570100, China
| | - Xiaoling Gao
- The Center of Clinical Laboratory, Hainan General Hospital, Haikou 570100, China
- Corresponding author.
| |
Collapse
|
9
|
Beni FA, Kazemi M, Dianat-Moghadam H, Behjati M. MicroRNAs regulating Wnt signaling pathway in colorectal cancer: biological implications and clinical potentials. Funct Integr Genomics 2022; 22:1073-1088. [DOI: 10.1007/s10142-022-00908-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/09/2022]
|
10
|
Han S, Cao Y, Guo T, Lin Q, Luo F. Targeting lncRNA/Wnt axis by flavonoids: A promising therapeutic approach for colorectal cancer. Phytother Res 2022; 36:4024-4040. [PMID: 36227024 DOI: 10.1002/ptr.7550] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/09/2022]
Abstract
Despite the dramatic advances in our understanding of the etiology of colorectal cancer (CRC) in recent decades, effective therapeutic strategies are still urgently needed. Oncogenic mutations in the Wnt/β-Catenin pathway are hallmarks of CRC. Moreover, long non-coding RNAs (lncRNAs) as molecular managers are involved in the initiation, progression, and metastasis of CRC. Therefore, it is important to further explore the interaction between lncRNAs and Wnt/β-Catenin signaling pathway for targeted therapy of CRC. Natural phytochemicals have not toxicity and can target carcinogenesis-related pathways. Growing evidences suggest that flavonoids are inversely associated with CRC risk. These bioactive compounds could target carcinogenesis pathways of CRC and reduced the side effects of anti-cancer drugs. The review systematically summarized the progress of flavonoids targeting lncRNA/Wnt axis in the investigations of CRC, which will provide a promising therapeutic approach for CRC and develop nutrition-oriented preventive strategies for CRC based on epigenetic mechanisms. In the field, more epidemiological and clinical trials are required in the future to verify feasibility of targeting lncRNA/Wnt axis by flavonoids in the therapy and prevention of CRC.
Collapse
Affiliation(s)
- Shuai Han
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| | - Yunyun Cao
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| | - Tianyi Guo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| | - Qinlu Lin
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| | - Feijun Luo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| |
Collapse
|
11
|
Li R, Gao X, Sun H, Sun L, Hu X. Expression characteristics of long non-coding RNA in colon adenocarcinoma and its potential value for judging the survival and prognosis of patients: bioinformatics analysis based on The Cancer Genome Atlas database. J Gastrointest Oncol 2022; 13:1178-1187. [PMID: 35837189 DOI: 10.21037/jgo-22-384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/27/2022] [Indexed: 11/06/2022] Open
Abstract
Background To investigate the expression characteristics of long non-coding RNA (lncRNA) in colon adenocarcinoma (COAD) and its potential value in predicting the prognosis of patient survival. Methods We downloaded COAD-related RNA sequencing (RNA-seq) data and patient survival data from The Cancer Genome Atlas (TCGA). The data were analyzed for lncRNA expression differences, subjected to Cox regression analysis for survival rate, and Kaplan-Meier (KM) survival curves were plotted to analyze the role of the key genes related to prognostic survival by pathway enrichment analysis. Results The data of 494 COAD clinical samples from TCGA were analyzed; 204 lncRNAs were differentially expressed, 156 were up-regulated, and 48 were down-regulated. The 10 genes with the most significant expression differences were Linc02418, Blacat1, ELFN1-AS1, CRNDE, AC002384.1, AL353801.1, LINC01645, AC073283.2, AC087379.1, and LINC00484. Cox regression analysis of 204 lncRNA genes showed that 23 lncRNA genes with significant effects on the prognosis and survival rate of COAD patients were obtained when P<0.05 was used as the threshold. With P≤0.001 as the threshold, the KM curves of 4 genes (Linc02257, Linc02474, Ac010789.1, Ac083967.1) were statistically significant (P<0.05). The gene Linc02257 was selected for Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and it was revealed that the inheritance of Linc02257-regulated gene expression was closely related to tumor development, such as collagen-containing extracellular matrix, organogenesis, activity of membrane protein receptors, and ion channel activity. The signaling pathways regulated by Linc02257 were also closely related to tumors, such as neuroactive ligand-receptor interaction, the PI3K-AKT signaling pathway, calcium signaling pathway, and protein digestion and absorption. Conclusions In COAD, lncRNA is differentially expressed and plays an important role in the disease regulation. It has potential application value in the diagnosis, targeted therapy, and prognosis of COAD patients.
Collapse
Affiliation(s)
- Ruofan Li
- Department of General Surgery, Beijing Luhe Hospital Capital Medical University, Beijing, China
| | - Xu Gao
- Department of General Surgery, Beijing Luhe Hospital Capital Medical University, Beijing, China
| | - Haitao Sun
- Department of General Surgery, Beijing Luhe Hospital Capital Medical University, Beijing, China
| | - Lixin Sun
- Department of General Surgery, Beijing Luhe Hospital Capital Medical University, Beijing, China
| | - Xiaojian Hu
- Department of Urology, Second Affiliated Hospital of Xi'an Medical College, Xi'an, China
| |
Collapse
|
12
|
Pavlič A, Hauptman N, Boštjančič E, Zidar N. Long Non-Coding RNAs as Potential Regulators of EMT-Related Transcription Factors in Colorectal Cancer—A Systematic Review and Bioinformatics Analysis. Cancers (Basel) 2022; 14:cancers14092280. [PMID: 35565409 PMCID: PMC9105237 DOI: 10.3390/cancers14092280] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Emerging evidence highlights long non-coding RNAs as important regulators of epithelial–mesenchymal transition. Numerous studies have attempted to define their possible diagnostic, prognostic and therapeutic values in various human cancers. The aim of this review is to summarize long non-coding RNAs involved in the regulation of epithelial–mesenchymal transition in colorectal carcinoma. Additional candidate long non-coding RNAs are identified through a bioinformatics analysis. Abstract Epithelial–mesenchymal transition (EMT) plays a pivotal role in carcinogenesis, influencing cancer progression, metastases, stemness, immune evasion, metabolic reprogramming and therapeutic resistance. EMT in most carcinomas, including colorectal carcinoma (CRC), is only partial, and can be evidenced by identification of the underlying molecular drivers and their regulatory molecules. During EMT, cellular reprogramming is orchestrated by core EMT transcription factors (EMT-TFs), namely ZEB1/2, TWIST1/2, SNAI1 (SNAIL) and SNAI2 (SLUG). While microRNAs have been clearly defined as regulators of EMT, the role of long non-coding RNAs (lncRNAs) in EMT is poorly defined and controversial. Determining the role of lncRNAs in EMT remains a challenge, because they are involved in a number of cellular pathways and are operating through various mechanisms. Adding to the complexity, some lncRNAs have controversial functions across different tumor types, acting as EMT promotors in some tumors and as EMT suppressors in others. The aim of this review is to summarize the role of lncRNAs involved in the regulation of EMT-TFs in human CRC. Additional candidate lncRNAs were identified through a bioinformatics analysis.
Collapse
|
13
|
Wang N, Li R, Jia H, Xie H, Liu C, Jiang S, Zhang K, Lin P, Yu X. Apaf-1 interacting protein, a new target of microRNA-146a-3p, promotes prostate cancer cell development via the ERK1/2 pathway. Cell Biol Int 2022; 46:1156-1168. [PMID: 35293661 DOI: 10.1002/cbin.11796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/25/2022] [Accepted: 03/13/2022] [Indexed: 11/06/2022]
Abstract
The Apaf-1 interacting protein APIP, a ubiquitously expressed anti-apoptotic molecule, is aberrantly expressed and of great significance in various cancers. However, little is known regarding the potential value and underlying mechanisms of APIP in prostate cancer. Here, we demonstrated that APIP expression is significantly upregulated in prostate cancer cell lines. APIP overexpression promoted tumor cell proliferation and migration and induced ERK1/2 activation. Pharmacological inhibition of ERK1/2 signaling reversed APIP-induced increase in cell proliferation and migration induced by APIP overexpression. Expression of APIP was hampered by miR-146a-3p. A dual luciferase reporter gene assay identified the regulatory relationship between APIP and miR-146a-3p in prostate cancer, suggesting that APIP is a direct target of miR-146a-3p. miR-146a-3p reduced cell proliferation and migration in prostate cancer. Furthermore, miR-146a-3p inhibited ERK1/2 activation. Application of an ERK1/2 inhibitor reversed the increase in cell proliferation and migration induced by miR-146a-3p inhibition. In summary, this study focused on the role of APIP in regulating cell growth and migration, and proposes a theoretical basis for APIP as a promising biomarker in prostate cancer development. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Nan Wang
- Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150086, P.R. China
| | - Rou Li
- Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150086, P.R. China
| | - Huizhen Jia
- Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150086, P.R. China
| | - Hui Xie
- Teaching Experiment Center of Biotechnology, Harbin Medical University, Harbin, Heilongjiang, 150001, P.R. China
| | - Chi Liu
- Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150086, P.R. China
| | - Shan Jiang
- Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150086, P.R. China
| | - Ke Zhang
- Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150086, P.R. China
| | - Ping Lin
- Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150086, P.R. China
| | - Xiaoguang Yu
- Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150086, P.R. China
| |
Collapse
|
14
|
Jia Z, An J, Liu Z, Zhang F. Non-Coding RNAs in Colorectal Cancer: Their Functions and Mechanisms. Front Oncol 2022; 12:783079. [PMID: 35186731 PMCID: PMC8847166 DOI: 10.3389/fonc.2022.783079] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is a common malignancy with high mortality. However, the molecular mechanisms underlying CRC remain unclear. Controversies over the exact functions of non-coding RNAs (ncRNAs) in the progression of CRC have been prevailing for multiple years. Recently, accumulating evidence has demonstrated the regulatory roles of ncRNAs in various human cancers, including CRC. The intracellular signaling pathways by which ncRNAs act on tumor cells have been explored, and in CRC, various studies have identified numerous dysregulated ncRNAs that serve as oncogenes or tumor suppressors in the process of tumorigenesis through diverse mechanisms. In this review, we have summarized the functions and mechanisms of ncRNAs (mainly lncRNAs, miRNAs, and circRNAs) in the tumorigenesis of CRC. We also discuss the potential applications of ncRNAs as diagnostic and prognostic tools, as well as therapeutic targets in CRC. This review details strategies that trigger the recognition of CRC-related ncRNAs, as well as the methodologies and challenges of studying these molecules, and the forthcoming clinical applications of these findings.
Collapse
Affiliation(s)
- Zimo Jia
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | - Jiaqi An
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | - Ziyuan Liu
- School of Medicine, Shihezi University, Shihezi, China
| | - Fan Zhang
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
| |
Collapse
|
15
|
Ji Y, Lv J, Sun D, Huang Y. Therapeutic strategies targeting Wnt/β‑catenin signaling for colorectal cancer (Review). Int J Mol Med 2022; 49:1. [PMID: 34713301 PMCID: PMC8589460 DOI: 10.3892/ijmm.2021.5056] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common carcinomas. Although great progress has been made in recent years, CRC survival remains unsatisfactory due to high metastasis and recurrence. Understanding the underlying molecular mechanisms of CRC tumorigenesis and metastasis has become increasingly important. Recently, aberrant Wnt/β‑catenin signaling has been reported to be strongly associated with CRC tumorigenesis, metastasis and recurrence. Therefore, the Wnt/β‑catenin signaling pathway has potential value as a therapeutic target for CRC. In the present review, the dysregulation of this pathway in CRC and the promoting or suppressing function of therapeutic targets on CRC were explored. In addition, the interaction between this pathway and epithelial‑mesenchymal transition (EMT), cell stemness, mutations, metastasis‑related genes and tumor angiogenesis in CRC cells were also investigated. Numerous studies on this pathway may help identify the potential diagnostic and prognostic markers and therapeutic targets for CRC.
Collapse
Affiliation(s)
- Yong Ji
- Department of General Surgery, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, P.R. China
| | - Jian Lv
- Department of General Surgery, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, P.R. China
| | - Di Sun
- Department of General Surgery, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, P.R. China
| | - Yufeng Huang
- Department of Oncology, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, P.R. China
| |
Collapse
|
16
|
Pyatnitskiy MA, Arzumanian VA, Radko SP, Ptitsyn KG, Vakhrushev IV, Poverennaya EV, Ponomarenko EA. Oxford Nanopore MinION Direct RNA-Seq for Systems Biology. BIOLOGY 2021; 10:1131. [PMID: 34827124 PMCID: PMC8615092 DOI: 10.3390/biology10111131] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 12/14/2022]
Abstract
Long-read direct RNA sequencing developed by Oxford Nanopore Technologies (ONT) is quickly gaining popularity for transcriptome studies, while fast turnaround time and low cost make it an attractive instrument for clinical applications. There is a growing interest to utilize transcriptome data to unravel activated biological processes responsible for disease progression and response to therapies. This trend is of particular interest for precision medicine which aims at single-patient analysis. Here we evaluated whether gene abundances measured by MinION direct RNA sequencing are suited to produce robust estimates of pathway activation for single sample scoring methods. We performed multiple RNA-seq analyses for a single sample that originated from the HepG2 cell line, namely five ONT replicates, and three replicates using Illumina NovaSeq. Two pathway scoring methods were employed-ssGSEA and singscore. We estimated the ONT performance in terms of detected protein-coding genes and average pairwise correlation between pathway activation scores using an exhaustive computational scheme for all combinations of replicates. In brief, we found that at least two ONT replicates are required to obtain reproducible pathway scores for both algorithms. We hope that our findings may be of interest to researchers planning their ONT direct RNA-seq experiments.
Collapse
Affiliation(s)
- Mikhail A. Pyatnitskiy
- Institute of Biomedical Chemistry, 119121 Moscow, Russia; (V.A.A.); (S.P.R.); (K.G.P.); (I.V.V.); (E.V.P.); (E.A.P.)
- Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia
| | - Viktoriia A. Arzumanian
- Institute of Biomedical Chemistry, 119121 Moscow, Russia; (V.A.A.); (S.P.R.); (K.G.P.); (I.V.V.); (E.V.P.); (E.A.P.)
| | - Sergey P. Radko
- Institute of Biomedical Chemistry, 119121 Moscow, Russia; (V.A.A.); (S.P.R.); (K.G.P.); (I.V.V.); (E.V.P.); (E.A.P.)
| | - Konstantin G. Ptitsyn
- Institute of Biomedical Chemistry, 119121 Moscow, Russia; (V.A.A.); (S.P.R.); (K.G.P.); (I.V.V.); (E.V.P.); (E.A.P.)
| | - Igor V. Vakhrushev
- Institute of Biomedical Chemistry, 119121 Moscow, Russia; (V.A.A.); (S.P.R.); (K.G.P.); (I.V.V.); (E.V.P.); (E.A.P.)
| | - Ekaterina V. Poverennaya
- Institute of Biomedical Chemistry, 119121 Moscow, Russia; (V.A.A.); (S.P.R.); (K.G.P.); (I.V.V.); (E.V.P.); (E.A.P.)
| | - Elena A. Ponomarenko
- Institute of Biomedical Chemistry, 119121 Moscow, Russia; (V.A.A.); (S.P.R.); (K.G.P.); (I.V.V.); (E.V.P.); (E.A.P.)
| |
Collapse
|
17
|
Hao Z, Luo Y, Wang J, Hickford JGH, Zhou H, Hu J, Liu X, Li S, Shen J, Ke N, Liang W, Huang Z. MicroRNA-432 inhibits milk fat synthesis by targeting SCD and LPL in ovine mammary epithelial cells. Food Funct 2021; 12:9432-9442. [PMID: 34606535 DOI: 10.1039/d1fo01260f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The microRNA (miR)-432 is differentially expressed in the mammary gland of two breeds of lactating sheep with different milk production traits, and between the non-lactating and peak-lactation periods, but there have been no reports describing the molecular mechanisms involved. In this study, the effect of miR-432 on the proliferation of ovine mammary epithelial cells (OMECs) and the target genes of miR-432 were investigated. The effects of miR-432 on the expression of the target genes and the content of triglycerides in the OMECs were also analyzed. Transfection with a miR-432 mimic was found using CCK8 and Edu assays, to inhibit the viability of OMECs and reduce the number of proliferated OMECs. In contrast, a miR-432 inhibitor had the opposite effect to the miR-432 mimic, and together these results suggest that miR-432 inhibits the proliferation of OMECs. A dual luciferase assay revealed that the genes for stearoyl-CoA desaturase (SCD) and lipoprotein lipase (LPL) are targeted by miR-432. The transfection of miR-432 mimic into OMECs resulted in decreases in the expression of SCD and LPL, and three other milk fat synthesis marker genes; FABP4, LPIN1 and ACACA. The mimic also decreased the content of triglycerides. The miR-432 inhibitor had the opposite effect to the mimic on the expression of these genes and the level of triglycerides. This is the first study to reveal the biological mechanisms by which miR-432 inhibits milk fat synthesis in sheep.
Collapse
Affiliation(s)
- Zhiyun Hao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Yuzhu Luo
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Jiqing Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Jon G H Hickford
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China. .,Gene-Marker Laboratory, Faculty of Agriculture and Life Science, Lincoln University, Lincoln 7647, New Zealand
| | - Huitong Zhou
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China. .,Gene-Marker Laboratory, Faculty of Agriculture and Life Science, Lincoln University, Lincoln 7647, New Zealand
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Xiu Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Jiyuan Shen
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Na Ke
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Weiwei Liang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Zhaochun Huang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
18
|
Sun J, Jiang Q, Chen H, Zhang Q, Zhao J, Li H, Wang X, Fang Y, Ruan Y, Sun Y. Genomic instability-associated lncRNA signature predicts prognosis and distinct immune landscape in gastric cancer. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1326. [PMID: 34532463 PMCID: PMC8422092 DOI: 10.21037/atm-21-3569] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/05/2021] [Indexed: 01/27/2023]
Abstract
Background Characterized by multiple features, genomic stability-related markers, such as microsatellite instability (MSI), were regulated as an important predictor of chemotherapy and immunity responses in cancer treatment. The aim of our study was to identify a genomic instability-associated long non-coding RNA (lncRNA) signature to help predict the survival and therapy response of gastric cancers (GCs). Methods We used RNA sequencing and single nucleotide variant (SNV) data from The Cancer Genome Atlas-stomach adenocarcinoma (TCGA-STAD) datasets to explore genomic instability-associated lncRNAs. Hierarchical cluster analyses of 197 differentially expressed genomic instability-associated lncRNAs were performed to separate GC patients into two groups, namely, the genomically unstable (GU)-like group and the genomically stable (GS)-like group. Results Cox regression analysis was conducted to finally identify six lncRNAs (LINC02678, HOXA10-AS, RHOXF1-AS1, AC010789.1, LINC01150, and TGFB2-AS1) with independent prognostic value to establish the genomic instability-associated lncRNA signature (GILncSig). Based on the SNV analysis, GILncSig was correlated with accumulation of gene mutation counts. Further comparisons between different risk score groups were performed to assess chemotherapy drug sensitivity and immune landscape variations. Conclusions Our study not only revealed the genomic instability-associated lncRNAs in GCs, but provided a key method and resource for further studies of the role of these lncRNAs play, and introduced a potential new way to identify genomic instability-associated cancer biomarkers.
Collapse
Affiliation(s)
- Jie Sun
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Quan Jiang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| | - Hao Chen
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qi Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Junjie Zhao
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Haojie Li
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xuefei Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yong Fang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuanyuan Ruan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yihong Sun
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Fang D, Wang MR, Guan JL, Han YY, Sheng JQ, Tian DA, Li PY. Bromodomain-containing protein 9 promotes hepatocellular carcinoma progression via activating the Wnt/β-catenin signaling pathway. Exp Cell Res 2021; 406:112727. [PMID: 34370992 DOI: 10.1016/j.yexcr.2021.112727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 06/08/2021] [Accepted: 07/02/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Epigenetic dysregulation participates in the initiation and progression of hepatocellular carcinoma (HCC). Bromodomain-containing protein 9 (BRD9) can identify acetylated lysine residues, contributing to several cancers. The function and molecular mechanism of BRD9 in HCC remain poorly understood. METHODS BRD9 levels in tissues and cells of HCC and normal liver were evaluated using bioinformatic analysis, real-time PCR, and western blot. BRD9's association with clinical outcomes was investigated via survival analyses. Biological behaviors and pathways related to BRD9 were predicted using gene set enrichment analysis. BRD9's role in proliferation was verified via cell counting kit 8, colony formation, and 5-Ethynyl-2'-deoxyuridine assays. Its role in the cell cycle and apoptosis was assessed using flow cytometry. The role of BRD9 in vivo was investigated using xenograft tumor models. A rescue assay was performed to investigate the molecular mechanism of BRD9. RESULTS BRD9 was markedly upregulated in HCC and higher BRD9 expression was associated with higher grade, advanced stage, greater tumor size, and poorer prognosis. BRD9 overexpression enhanced cell proliferation, cell cycle progress, but impeded cell apoptosis. BRD9 downregulation had the opposite effects. In vivo, BRD9 promoted xenograft tumor growth. Mechanistically, BRD9 activated Wnt/β-catenin signaling, obstruction of which abrogated BRD9-mediated tumorigenesis. CONCLUSION Increased BRD9 in HCC correlated with poor prognosis, which functioned via activating Wnt/β-catenin signaling. Thus, BRD9 might be a promising biomarker and therapeutic target for patients with HCC.
Collapse
Affiliation(s)
- Dan Fang
- Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Mu-Ru Wang
- Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jia-Lun Guan
- Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ying-Ying Han
- Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jia-Qi Sheng
- Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinical Medical Research Center of Hepatic Surgery in Hubei Province, Wuhan, China.
| | - De-An Tian
- Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Pei-Yuan Li
- Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Gastroenterology, Wenchang People's Hospital, Hainan, China.
| |
Collapse
|
20
|
Sun J, Peng Y, Liu J, Zhou H, Sun L, He Q, Yu E. Pseudogene legumain promotes thyroid carcinoma progression via the microRNA-495/autophagy pathway. Oncol Lett 2021; 22:616. [PMID: 34257724 PMCID: PMC8243076 DOI: 10.3892/ol.2021.12877] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/24/2021] [Indexed: 01/03/2023] Open
Abstract
The pseudogene legumain (LGMN) has been reported to regulate cancer cell biology. However, the role of LGMN in thyroid carcinoma remains unknown. Herein, Cell Counting Kit 8 and Transwell assays were performed to evaluate cellular proliferation and invasion capacity, respectively. In addition, a tube formation assay was performed to assess HUVEC angiogenesis. The results showed that LGMN depletion attenuated cellular proliferation, invasion and tube formation ability, and that LGMN expression was dysregulated in thyroid carcinoma tumors. Furthermore, patients with high LGMN expression levels exhibited a lower overall survival rate than those with low expression levels. LGMN and microRNA (miR)-495 modulated the expression levels of autophagy-related gene 3 (ATG3) and p62. Finally, ATG3 overexpression rescued the LGMN-regulated thyroid carcinoma phenotype. In conclusion, LGMN was found to promote thyroid carcinoma progression via the miR-495/autophagy axis, thus providing novel insights for understanding the pathogenesis of thyroid carcinoma.
Collapse
Affiliation(s)
- Jie Sun
- Department of Breast Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Yicheng Peng
- Department of Breast Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jianxia Liu
- Department of Breast Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Hao Zhou
- Department of Breast Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Liang Sun
- Department of Breast Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Qin He
- Department of Breast Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Enqiao Yu
- Department of Breast Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
21
|
Chen J, Li X, Yang L, Zhang J. Long Non-coding RNA LINC01969 Promotes Ovarian Cancer by Regulating the miR-144-5p/LARP1 Axis as a Competing Endogenous RNA. Front Cell Dev Biol 2021; 8:625730. [PMID: 33614632 PMCID: PMC7889973 DOI: 10.3389/fcell.2020.625730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/28/2020] [Indexed: 12/19/2022] Open
Abstract
Accumulating evidence has shown that long non-coding RNAs (lncRNAs) can be used as biological markers and treatment targets in cancer and play various roles in cancer-related biological processes. However, the lncRNA expression profiles and their roles and action mechanisms in ovarian cancer (OC) are largely unknown. Here, we assessed the lncRNA expression profiles in OC tissues from The Cancer Genome Atlas (TCGA) database, and one upregulated lncRNA, LINC01969, was selected for further study. LINC01969 expression levels in 41 patients were verified using quantitative real-time polymerase chain reaction (qRT-PCR). The in vitro effects of LINC01969 on OC cell migration, invasion, and proliferation were determined by the CCK-8, ethynyl-2-deoxyuridine (EdU), wound healing, and Transwell assays. Epithelial–mesenchymal transition (EMT) was evaluated using qRT-PCR and Western blotting. The molecular mechanisms of LINC01969 in OC were assessed through bioinformatics analysis, RNA-binding protein immunoprecipitation (RIP), dual luciferase reporter gene assays, and a rescue experiment. Finally, in vivo experiments were conducted to evaluate the functions of LINC01969. The results of the current study showed that LINC01969 was dramatically upregulated in OC, and patients with lower LINC01969 expression levels tended to have better overall survival. Further experiments demonstrated that LINC01969 promoted the migration, invasion, and proliferation of OC cells in vitro and sped up tumor growth in vivo. Additionally, LINC01969, which primarily exists in the cytoplasm, boosted LARP1 expression by sponging miR-144-5p and promoted the malignant phenotypes of OC cells. In conclusion, the LINC01969/miR-144-5p/LARP1 axis is a newly identified regulatory signaling pathway involved in OC progression.
Collapse
Affiliation(s)
- Jinxin Chen
- Department of Gynecology, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Xiaocen Li
- Department of Graduate School, Dalian Medical University, Dalian, China
| | - Lu Yang
- Medical Oncology Department of Gastrointestinal Cancer, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Jingru Zhang
- Department of Gynecology, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| |
Collapse
|