1
|
Noh S, Na S, Song X, Hyun S. Germline expression of Imp-L2 in Drosophila females enhances reproductive activity and longevity. Anim Cells Syst (Seoul) 2025; 29:31-40. [PMID: 40103616 PMCID: PMC11915738 DOI: 10.1080/19768354.2025.2480150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/24/2025] [Accepted: 03/11/2025] [Indexed: 03/20/2025] Open
Abstract
The Imaginal morphogenesis protein-Late 2 (Imp-L2) in Drosophila is recognized as a functional homolog of the insulin-like growth factor (IGF) binding protein family. In this study, we report that Imp-L2 expression in germline cells during oogenesis simultaneously enhances both fecundity and lifespan in female Drosophila. Loss of Imp-L2, either through knockout or germline-specific knockdown, resulted in decreased reproductive activity, as evidenced by reduced ovary size and fecundity, along with a higher proportion of infertile flies. Conversely, overexpression of Imp-L2 specifically in germline cells enhanced reproductive activity. Imp-L2 appears to regulate germline stem cell proliferation and differentiation independently of IGF signaling. Interestingly, germline-specific knockdown of Imp-L2 shortened the lifespan of female flies, whereas its overexpression extended it. Thus, Imp-L2 expression in the germline promotes both reproductive activity and longevity, presenting an exception to the typical trade-off between reproduction and lifespan.
Collapse
Affiliation(s)
- Sujin Noh
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Sungjoon Na
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Xinge Song
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Seogang Hyun
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Rojas-Ríos P, Chartier A, Enjolras C, Cremaschi J, Garret C, Boughlita A, Ramat A, Simonelig M. piRNAs are regulators of metabolic reprogramming in stem cells. Nat Commun 2024; 15:8405. [PMID: 39333531 PMCID: PMC11437085 DOI: 10.1038/s41467-024-52709-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 09/17/2024] [Indexed: 09/29/2024] Open
Abstract
Stem cells preferentially use glycolysis instead of oxidative phosphorylation and this metabolic rewiring plays an instructive role in their fate; however, the underlying molecular mechanisms remain largely unexplored. PIWI-interacting RNAs (piRNAs) and PIWI proteins have essential functions in a range of adult stem cells across species. Here, we show that piRNAs and the PIWI protein Aubergine (Aub) are instrumental in activating glycolysis in Drosophila female germline stem cells (GSCs). Higher glycolysis is required for GSC self-renewal and aub loss-of-function induces a metabolic switch in GSCs leading to their differentiation. Aub directly binds glycolytic mRNAs and Enolase mRNA regulation by Aub depends on its 5'UTR. Furthermore, mutations of a piRNA target site in Enolase 5'UTR lead to GSC loss. These data reveal an Aub/piRNA function in translational activation of glycolytic mRNAs in GSCs, and pinpoint a mechanism of regulation of metabolic reprogramming in stem cells based on small RNAs.
Collapse
Affiliation(s)
- Patricia Rojas-Ríos
- Institute of Human Genetics, Université de Montpellier, CNRS, Montpellier, France
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Aymeric Chartier
- Institute of Human Genetics, Université de Montpellier, CNRS, Montpellier, France
| | - Camille Enjolras
- Institute of Human Genetics, Université de Montpellier, CNRS, Montpellier, France
| | - Julie Cremaschi
- Institute of Human Genetics, Université de Montpellier, CNRS, Montpellier, France
| | - Céline Garret
- Institute of Human Genetics, Université de Montpellier, CNRS, Montpellier, France
| | - Adel Boughlita
- Institute of Human Genetics, Université de Montpellier, CNRS, Montpellier, France
| | - Anne Ramat
- Institute of Human Genetics, Université de Montpellier, CNRS, Montpellier, France
| | - Martine Simonelig
- Institute of Human Genetics, Université de Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
3
|
Fu B, Ma R, Liu F, Chen X, Wang M, Jin W, Zhang S, Wang Y, Sun L. New insights into ginsenoside Rg1 regulating the niche to inhibit age-induced germline stem cells depletion through targeting ECR/BMP signaling pathway in Drosophila. Aging (Albany NY) 2024; 16:3612-3630. [PMID: 38364249 PMCID: PMC10929810 DOI: 10.18632/aging.205548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/08/2024] [Indexed: 02/18/2024]
Abstract
PURPOSE The age-induced imbalance in ecological niches leads to the loss of GSCs, which is the main reason for ovarian germline senescence. Ginsenoside Rg1 can delay ovarian senescence. Here, we shed light on new insights of ginsenoside Rg1 in regulating the niche to maintain GSCs self-renewal and discussing related molecular mechanisms. METHODS The differences among GSC number, reproductive capacity of naturally aging female Drosophila after ginsenoside Rg1 feeding were analyzed by immunofluorescence and behavior monitoring. The expressions of the active factors in the niche and the BMP signaling were analyzed through Western blot and RT-qPCR. The target effect was verified in the ECR mutant and combined with the molecular docking. RESULTS Ginsenoside Rg1 inhibited the age-induced reduction of the GSCs number and restored offspring production and development. Ginsenoside Rg1 promoted the expression of anchor proteins E-cadherin, stemness maintenance factor Nos and differentiation promoting factor Bam, thereby GSCs niche homeostasis was regulated. In addition, ginsenoside Rg1 was bound to the LBD region of the hormone receptor ECR. Ginsenoside Rg1 promotes the regeneration of GSCs by targeting the ECR to increase pSmad1/5/8 expression and thereby activating the BMP signaling pathway. In addition, ginsenoside Rg1 maintenance of niche homeostasis to promote GSCs regeneration is dependent on ECR as demonstrated in ECR mutants. CONCLUSIONS Ginsenoside Rg1 regulated the ecological niche homeostasis of GSCs and promoted the regeneration of GSCs by targeting the ECR/BMP signaling pathway in hormone-deficient states in aging ovaries. It is of great significance for prolonging fertility potential and delaying ovarian senescence.
Collapse
Affiliation(s)
- Baoyu Fu
- Research Center of Traditional Chinese Medicine, Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Rui Ma
- Research Center of Traditional Chinese Medicine, Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Fangbing Liu
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Xuenan Chen
- Research Center of Traditional Chinese Medicine, Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Manying Wang
- Research Center of Traditional Chinese Medicine, Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Wenqi Jin
- Research Center of Traditional Chinese Medicine, Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Shuai Zhang
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Yanping Wang
- Obstetrics and Gynecology Diagnosis and Treatment Center, The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin 130062, China
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine, Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| |
Collapse
|
4
|
Téfit MA, Budiman T, Dupriest A, Yew JY. Environmental microbes promote phenotypic plasticity in reproduction and sleep behaviour. Mol Ecol 2023; 32:5186-5200. [PMID: 37577956 PMCID: PMC10544802 DOI: 10.1111/mec.17095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 06/13/2023] [Accepted: 07/25/2023] [Indexed: 08/15/2023]
Abstract
The microbiome has been hypothesized as a driving force of phenotypic variation in host organisms that is capable of extending metabolic processes, altering development and in some cases, conferring novel functions that are critical for survival. Only a few studies have directly shown a causal role for the environmental microbiome in altering host phenotypic features. To assess the extent to which environmental microbes induce variation in host life-history traits and behaviour, we inoculated axenic Drosophila melanogaster with microbes isolated from drosophilid populations collected from two different field sites and generated two populations with distinct bacterial and fungal profiles. We show that microbes isolated from environmental sites with modest abiotic differences induce large variation in host reproduction, fatty acid levels, stress tolerance and sleep behaviour. Importantly, clearing microbes from each experimental population removed the phenotypic differences. The results support the causal role of environmental microbes as drivers of host phenotypic plasticity and potentially, rapid adaptation and evolution.
Collapse
Affiliation(s)
- Mélisandre A Téfit
- School of Ocean and Earth Science and Technology, Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Tifanny Budiman
- School of Ocean and Earth Science and Technology, Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Adrianna Dupriest
- School of Ocean and Earth Science and Technology, Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Joanne Y Yew
- School of Ocean and Earth Science and Technology, Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| |
Collapse
|
5
|
Neiswender H, Baker FC, Veeranan-Karmegam R, Allen P, Gonsalvez GB. dTtc1, a conserved tetratricopeptide repeat protein, is required for maturation of Drosophila egg chambers via its role in stabilizing electron transport chain components. Front Cell Dev Biol 2023; 11:1148773. [PMID: 37333987 PMCID: PMC10272552 DOI: 10.3389/fcell.2023.1148773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
We recently identified the Drosophila ortholog of TTC1 (dTtc1) as an interacting partner of Egalitarian, an RNA adaptor of the Dynein motor. In order to better understand the function of this relatively uncharacterized protein, we depleted dTtc1 in the Drosophila female germline. Depletion of dTtc1 resulted in defective oogenesis and no mature eggs were produced. A closer examination revealed that mRNA cargoes normally transported by Dynein were relatively unaffected. However, mitochondria in dTtc1 depleted egg chambers displayed an extremely swollen phenotype. Ultrastructural analysis revealed a lack of cristae. These phenotypes were not observed upon disruption of Dynein. Thus, this function of dTtc1 is likely to be Dynein independent. Consistent with a role for dTtc1 in mitochondrial biology, a published proteomics screen revealed that dTtc1 interacts with numerous components of electron transport chain (ETC) complexes. Our results indicate that the expression level of several of these ETC components was significantly reduced upon depletion of dTtc1. Importantly, this phenotype was completely rescued upon expression of wild-type GFP-dTtc1 in the depleted background. Lastly, we demonstrate that the mitochondrial phenotype caused by a lack of dTtc1 is not restricted to the germline but is also observed in somatic tissues. Our model suggests that dTtc1, likely in combination with cytoplasmic chaperones, is required for stabilizing ETC components.
Collapse
|
6
|
Olivar-Villanueva M, Ren M, Schlame M, Phoon CK. The critical role of cardiolipin in metazoan differentiation, development, and maturation. Dev Dyn 2023; 252:691-712. [PMID: 36692477 PMCID: PMC10238668 DOI: 10.1002/dvdy.567] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/27/2022] [Accepted: 01/13/2023] [Indexed: 01/25/2023] Open
Abstract
Cardiolipins are phospholipids that are central to proper mitochondrial functioning. Because mitochondria play crucial roles in differentiation, development, and maturation, we would also expect cardiolipin to play major roles in these processes. Indeed, cardiolipin has been implicated in the mechanism of three human diseases that affect young infants, implying developmental abnormalities. In this review, we will: (1) Review the biology of cardiolipin; (2) Outline the evidence for essential roles of cardiolipin during organismal development, including embryogenesis and cell maturation in vertebrate organisms; (3) Place the role(s) of cardiolipin during embryogenesis within the larger context of the roles of mitochondria in development; and (4) Suggest avenues for future research.
Collapse
Affiliation(s)
| | - Mindong Ren
- Department of Anesthesiology, New York University Grossman School of Medicine, New York, New York, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, New York, USA
| | - Michael Schlame
- Department of Anesthesiology, New York University Grossman School of Medicine, New York, New York, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, New York, USA
| | - Colin K.L. Phoon
- Department of Pediatrics, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
7
|
Qi L, Li Y, Dong Y, Ma S, Li G. Integrated metabolomics and transcriptomics reveal glyphosate based-herbicide induced reproductive toxicity through disturbing energy and nucleotide metabolism in mice testes. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 37087751 DOI: 10.1002/tox.23808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Glyphosate is a widely used herbicide that has deleterious effects on animal reproduction. However, details regarding the systematic mechanisms of glyphosate-induced reproductive toxicity are limited. This study aimed to investigate the toxic effects of glyphosate-based herbicide (GBH) on reproduction in mice exposed to 0 (control group), 50 (low-dose group), 250 (middle-dose group), and 500 (high-dose group) mg/kg/day GBH for 30 days. Toxicological parameters, metabolomics, and transcriptomics were performed to reveal GBH-induced reproductive toxicity. Our findings demonstrated that GBH exposure damaged mitochondrial pyknosis and the nuclear membrane of spermatogonia. GBH triggered a significant increase in sperm malformations in the high-dose group. Omics data showed that GBH impaired the Krebs cycle and respiratory chain, blocked pyruvate metabolism and glycolysis/gluconeogenesis, and influenced the pentose phosphate pathway and nucleotide synthesis and metabolism. Overall, the multi-omics results revealed systematic and comprehensive evidence of the adverse effects of GBH exposure, providing new insights into the reproductive toxicity of organophosphorus pesticides.
Collapse
Affiliation(s)
- Lei Qi
- Department of Nutrition and Food Hygiene, Public Health College, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Yupeng Li
- Physical Examination Center, the Third Affiliated Hospital, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Yanmei Dong
- Department of Nutrition and Food Hygiene, Public Health College, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Shuli Ma
- Public Health Experimental Center, Public Health College, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Gang Li
- Department of Preventive Medicine, Public Health College, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| |
Collapse
|
8
|
Yao YL, Ma XY, Wang TY, Yan JY, Chen NF, Hong JS, Liu BQ, Xu ZQ, Zhang N, Lv C, Sun X, Luan JB. A bacteriocyte symbiont determines whitefly sex ratio by regulating mitochondrial function. Cell Rep 2023; 42:112102. [PMID: 36774548 DOI: 10.1016/j.celrep.2023.112102] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 11/28/2022] [Accepted: 01/26/2023] [Indexed: 02/13/2023] Open
Abstract
Nutritional symbionts influence host reproduction, but the underlying molecular mechanisms are largely unclear. We previously found that the bacteriocyte symbiont Hamiltonella impacts the sex ratio of the whitefly Bemisia tabaci. Hamiltonella synthesizes folate by cooperation with the whitefly. Folate deficiency by Hamiltonella elimination or whitefly gene silencing distorted whitefly sex ratio, and folate supplementation restored the sex ratio. Hamiltonella deficiency or gene silencing altered histone H3 lysine 9 trimethylation (H3K9me3) level, which was restored by folate supplementation. Genome-wide chromatin immunoprecipitation-seq analysis of H3K9me3 indicated mitochondrial dysfunction in symbiont-deficient whiteflies. Hamiltonella deficiency compromised mitochondrial quality of whitefly ovaries. Repressing ovary mitochondrial function led to distorted whitefly sex ratio. These findings indicate that the symbiont-derived folate regulates host histone methylation modifications, which thereby impacts ovary mitochondrial function, and finally determines host sex ratio. Our study suggests that a nutritional symbiont can regulate animal reproduction in a way that differs from reproductive manipulators.
Collapse
Affiliation(s)
- Ya-Lin Yao
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Xin-Yu Ma
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Tian-Yu Wang
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Jin-Yang Yan
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Nai-Fei Chen
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Ji-Sheng Hong
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Bing-Qi Liu
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Zi-Qi Xu
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Nuo Zhang
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Chao Lv
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiang Sun
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Jun-Bo Luan
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
9
|
Ayachit MS, Shravage BV. Atg1 modulates mitochondrial dynamics to promote germline stem cell maintenance in Drosophila. Biochem Biophys Res Commun 2023; 643:192-202. [PMID: 36621115 DOI: 10.1016/j.bbrc.2022.11.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/11/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022]
Abstract
Mitochondrial dynamics (fusion and fission) are necessary for stem cell maintenance and differentiation. However, the relationship between mitophagy, mitochondrial dynamics and stem cell exhaustion needs to be clearly understood. Here we report the multifaceted role of Atg1 in mitophagy, mitochondrial dynamics and stem cell maintenance in female germline stem cells (GSCs) in Drosophila. We found that depletion of Atg1 in GSCs leads to impaired autophagy and mitophagy as measured by reduced formation of autophagosomes, increased accumulation of p62/Ref (2)P and accumulation of damaged mitochondria. Disrupting Atg1 function led to mitochondrial fusion in developing cysts. The fusion resulted from an increase in Marf levels in both GSCs and cysts, and the fusion phenotype could be rescued by overexpression of Drp1 or by depleting Marf via RNAi in Atg1-depleted cyst cells. Interestingly, double knockdown of both Atg1:Drp1 led to the significant loss of germ cells (GCs) as compared to Atg1KD and Drp1KD. Strikingly, Atg1:Marf double knockdown leads to a dramatic loss of GSCs, GCs and a total loss of vitellogenic stages, suggesting a block in oogenesis. Overall, our results demonstrate that Drp1, Marf and Atg1 function together to influence female GSC maintenance, their differentiation into cysts and oogenesis in Drosophila.
Collapse
Affiliation(s)
- Minal S Ayachit
- Developmental Biology Group, MACS-Agharkar Research Institute, Gopal Ganesh Agarkar Road, Pune, 411004, India; Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Bhupendra V Shravage
- Developmental Biology Group, MACS-Agharkar Research Institute, Gopal Ganesh Agarkar Road, Pune, 411004, India; Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India.
| |
Collapse
|
10
|
Lv J, Yi Y, Qi Y, Yan C, Jin W, Meng L, Zhang D, Jiang W. Mitochondrial homeostasis regulates definitive endoderm differentiation of human pluripotent stem cells. Cell Death Discov 2022; 8:69. [PMID: 35177589 PMCID: PMC8854419 DOI: 10.1038/s41420-022-00867-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/21/2022] [Accepted: 02/02/2022] [Indexed: 11/13/2022] Open
Abstract
Cellular organelles play fundamental roles in almost all cell behaviors. Mitochondria have been reported to be functionally linked to various biological processes, including reprogramming and pluripotency maintenance. However, very little about the role of mitochondria has been revealed in human early development and lineage specification. Here, we reported the characteristics and function of mitochondria during human definitive endoderm differentiation. Using a well-established differentiation system, we first investigated the change of mitochondrial morphology by comparing undifferentiated pluripotent stem cells, the intermediate mesendoderm cells, and differentiated endoderm cells, and found that mitochondria were gradually elongated and matured along differentiation. We further analyzed the expression pattern of mitochondria-related genes by RNA-seq, indicating that mitochondria became active during differentiation. Supporting this notion, the production of adenosine triphosphate (ATP) and reactive oxygen species (ROS) was increased as well. Functionally, we utilized chemicals and genome editing techniques, which could interfere with mitochondrial homeostasis, to determine the role of mitochondria in human endoderm differentiation. Treatment with mitochondrial inhibitors, or genetic depletion of mitochondrial transcription factor A (TFAM), significantly reduced the differentiation efficiency of definitive endoderm. In addition, the defect in endoderm differentiation due to dysfunctional mitochondria could be restored to some extent by the addition of ATP. Moreover, the clearance of excessive ROS due to dysfunctional mitochondria by N-acetylcysteine (NAC) improved the differentiation as well. We further found that ATP and NAC could partially replace the growth factor activin A for definitive endoderm differentiation. Our study illustrates the essential role of mitochondria during human endoderm differentiation through providing ATP and regulating ROS levels, which may provide new insight for metabolic regulation of cell fate determination.
Collapse
Affiliation(s)
- Jing Lv
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Ying Yi
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Yan Qi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China
| | - Chenchao Yan
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Wenwen Jin
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Liming Meng
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China.
| | - Wei Jiang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China.
- Human Genetics Resource Preservation Center of Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
11
|
Li Y, Bagheri P, Chang P, Zeng A, Hao J, Fung A, Wu JY, Shi L. Direct Imaging of Lipid Metabolic Changes in Drosophila Ovary During Aging Using DO-SRS Microscopy. FRONTIERS IN AGING 2022; 2:819903. [PMID: 35822015 PMCID: PMC9261447 DOI: 10.3389/fragi.2021.819903] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/29/2021] [Indexed: 01/09/2023]
Abstract
Emerging studies have shown that lipids and proteins play versatile roles in various aspects of aging. High-resolution in situ optical imaging provides a powerful approach to study the metabolic dynamics of lipids and proteins during aging. Here, we integrated D2O probing and stimulated Raman scattering (DO-SRS) microscopy to directly visualize metabolic changes in aging Drosophila ovary. The subcellular spatial distribution of de novo protein synthesis and lipogenesis in ovary was quantitatively imaged and examined. Our Raman spectra showed that early stages follicles were protein-enriched whereas mature eggs were lipid-enriched. DO-SRS imaging showed a higher protein synthesis in the earlier developing stages and an increased lipid turned over at the late stage. Aged (35 days) flies exhibited a dramatic decrease in metabolic turnover activities of both proteins and lipids, particularly, in the germ stem cell niche of germarium. We found an accumulation of unsaturated lipids in the nurse cells and oocytes in old flies, suggesting that unsaturated lipids may play an important role in the processes of oocyte maturation. We further detected changes in mitochondrial morphology and accumulation of Cytochrome c during aging. To our knowledge, this is the first study that directly visualizes spatiotemporal changes in lipid and protein metabolism in Drosophila ovary during development and aging processes. Our study not only demonstrates the application of a new imaging platform in visualizing metabolic dynamics of lipids and proteins in situ but also unravels how the metabolic activity and lipid distribution change in Drosophila ovary during aging.
Collapse
Affiliation(s)
- Yajuan Li
- The Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
| | - Pegah Bagheri
- The Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
| | - Phyllis Chang
- The Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
| | - Audrey Zeng
- The Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
| | - Jie Hao
- The Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
| | - Anthony Fung
- The Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
| | - Jane Y. Wu
- Department of Neurology, Northwestern University, Chicago, IL, United States
| | - Lingyan Shi
- The Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
- *Correspondence: Lingyan Shi,
| |
Collapse
|